Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Analysis of Liquid Volatile Matters from Coconut Shell Pyrolysis by GC-MS and Its Potential as Antifungal Agent
Corresponding Author(s) : F.H. Hamid
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
Indonesia is one of the highest producers of coconut in the world and at the same time coconut shell waste is also high. This study used gas chromatography-mass spectrometric (GC-MS) analysis for the liquid volatile matter (LVM) generated from coconut shell pyrolysis and to examine its potential as an antifungal agent. Pyrolysis was performed at 600 ºC. The LVM was 29% (v/w) and had pH 3 and 1.087 g mL-1 density. To determine chemical constituents using GC-MS, the standard NIST MS software was used. The spectrogram analysis of LVM revealed five main compounds, namely phenol (21.92%); (Z)-4-methyl-5-(2-oxopropylidene)-5H-furan-2-one (13.06%); 2,6-dimethoxyphenol (11.54%); 2-methoxyphenol (9.07%) and 2-hydroxy-3-methyl-2-cyclopenten-1-one (7.66%). The LVM showed a excellent fungicidal activity against Phytophthora palmivora at a concentration of 0.125% (v/v).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Wang and J. Sarkar, Int. J. Energy Prod. Manag., 3, 34 (2018); https://doi.org/10.2495/EQ-V3-N1-34-43
- M.F. Demirbas, M. Balat and H. Balat, Energy Convers. Manage., 52, 1815 (2011); https://doi.org/10.1016/j.enconman.2010.10.041
- T. Kan, V. Strezov and T.J. Evans, Renew. Sustain. Energy Rev., 57, 1126 (2016); https://doi.org/10.1016/j.rser.2015.12.185
- N. Montazeri, A.C.M. Oliveira, B.H. Himelbloom, M.B. Leigh and C.A. Crapo, Food Sci. Nutr., 1, 102 (2013); https://doi.org/10.1002/fsn3.9
- V. Dhyania and T. Bhaskar, Renew. Energy, 129B, 695 (2018); https://doi.org/10.1016/j.renene.2017.04.035
- M. Jahirul, M. Rasul, A. Chowdhury and N. Ashwath, Energies, 5, 4952 (2012); https://doi.org/10.3390/en5124952
- A.H. Tchapda and S.V. Pisupati, Energies, 7, 1098 (2014); https://doi.org/10.3390/en7031098
- Q. Wei, X.H. Ma and J.E. Dong, J. Anal. Appl. Pyrolysis, 87, 24 (2010); https://doi.org/10.1016/j.jaap.2009.09.006
- P.J. Milly, R.T. Toledo and J. Chen, J. Food Sci., 73, 179 (2008); https://doi.org/10.1111/j.1750-3841.2008.00714.x
- A. Demirbas, Biofuels: Securing the Planet’s Future Energy Needs, Springer-Verlag London Limited: London, UK (2009).
- A.J. Tsamba, W. Yang and W. Blasiak, Fuel Process. Technol., 87, 523 (2006); https://doi.org/10.1016/j.fuproc.2005.12.002
- Q. Wang, D. Tian, J. Hu, F. Shen, G. Yang, Y. Zhang, S. Deng, J. Zhang, Y, Zeng and Y. Hu, RSC Adv., 8, 12714 (2018); https://doi.org/10.1039/c8ra00764k
- T. Fisher, M. Hajaligol, B. Waymack and D. Kellogg, J. Anal. Appl. Pyrol., 62, 331 (2002); https://doi.org/10.1016/S0165-2370(01)00129-2
- H. Yang, R. Yan, H. Chen, D.H. Lee and C. Zheng, Fuel, 86, 1781 (2007); https://doi.org/10.1016/j.fuel.2006.12.013
- K.R. Cadwallader, Wood Smoke Flavor, Blackwell Publishing: Iowa, USA, pp 201-209 (2007).
- M.A. Kader, M.R. Islam, M. Parveen, H. Haniu and K. Takai, Bioresour. Technol., 149, 1 (2013); https://doi.org/10.1016/j.biortech.2013.09.032
- K.P. Shadangi and K. Mohanty, Fuel, 117, 372 (2014); https://doi.org/10.1016/j.fuel.2013.09.001
- Mashuni, M. Jahiding, W.S. Ilmawati, I. Kurniasih, W. Wati, Muzirah and M. Burhan, J. Phys.: Conf. Ser., 846, 012026 (2017); https://doi.org/10.1088/1742-6596/846/1/012026
- D. Pradhan, R.K. Singh, H. Bendu and R. Mund, Energy Convers. Manage., 108, 529 (2016); https://doi.org/10.1016/j.enconman.2015.11.042
- F. Huang, Y. Yu and H. Huang, J. Anal. Appl. Pyr., 130, 36 (2018); https://doi.org/10.1016/j.jaap.2018.01.030
- C. Zhao, E. Jiang and A. Chen, J. Energy Inst., 90, 902 (2017); https://doi.org/10.1016/j.joei.2016.08.004
- M. Brebu and C. Vasile, Cellul. Chem. Technol., 44, 353 (2010).
- D. Ardilla, Tamrin, B. Wirjosentono, Eddyanto and M.S. Siregar, Chem. Mater. Res., 7, 71 (2015).
- T. Stevic, T. Beric, K. Šavikin, M. Sokovic, D. Godevac, I. Dimkic and S. Stankovic, Ind. Crops Prod., 55, 116 (2014); https://doi.org/10.1016/j.indcrop.2014.02.011
- S. Sukrasno, D.L. Aulifa, Y. Karlina and N.P. Aryantha, Asian J. Pharm. Sci., 11, 28 (2016); https://doi.org/10.1016/j.ajps.2015.10.019
References
Q. Wang and J. Sarkar, Int. J. Energy Prod. Manag., 3, 34 (2018); https://doi.org/10.2495/EQ-V3-N1-34-43
M.F. Demirbas, M. Balat and H. Balat, Energy Convers. Manage., 52, 1815 (2011); https://doi.org/10.1016/j.enconman.2010.10.041
T. Kan, V. Strezov and T.J. Evans, Renew. Sustain. Energy Rev., 57, 1126 (2016); https://doi.org/10.1016/j.rser.2015.12.185
N. Montazeri, A.C.M. Oliveira, B.H. Himelbloom, M.B. Leigh and C.A. Crapo, Food Sci. Nutr., 1, 102 (2013); https://doi.org/10.1002/fsn3.9
V. Dhyania and T. Bhaskar, Renew. Energy, 129B, 695 (2018); https://doi.org/10.1016/j.renene.2017.04.035
M. Jahirul, M. Rasul, A. Chowdhury and N. Ashwath, Energies, 5, 4952 (2012); https://doi.org/10.3390/en5124952
A.H. Tchapda and S.V. Pisupati, Energies, 7, 1098 (2014); https://doi.org/10.3390/en7031098
Q. Wei, X.H. Ma and J.E. Dong, J. Anal. Appl. Pyrolysis, 87, 24 (2010); https://doi.org/10.1016/j.jaap.2009.09.006
P.J. Milly, R.T. Toledo and J. Chen, J. Food Sci., 73, 179 (2008); https://doi.org/10.1111/j.1750-3841.2008.00714.x
A. Demirbas, Biofuels: Securing the Planet’s Future Energy Needs, Springer-Verlag London Limited: London, UK (2009).
A.J. Tsamba, W. Yang and W. Blasiak, Fuel Process. Technol., 87, 523 (2006); https://doi.org/10.1016/j.fuproc.2005.12.002
Q. Wang, D. Tian, J. Hu, F. Shen, G. Yang, Y. Zhang, S. Deng, J. Zhang, Y, Zeng and Y. Hu, RSC Adv., 8, 12714 (2018); https://doi.org/10.1039/c8ra00764k
T. Fisher, M. Hajaligol, B. Waymack and D. Kellogg, J. Anal. Appl. Pyrol., 62, 331 (2002); https://doi.org/10.1016/S0165-2370(01)00129-2
H. Yang, R. Yan, H. Chen, D.H. Lee and C. Zheng, Fuel, 86, 1781 (2007); https://doi.org/10.1016/j.fuel.2006.12.013
K.R. Cadwallader, Wood Smoke Flavor, Blackwell Publishing: Iowa, USA, pp 201-209 (2007).
M.A. Kader, M.R. Islam, M. Parveen, H. Haniu and K. Takai, Bioresour. Technol., 149, 1 (2013); https://doi.org/10.1016/j.biortech.2013.09.032
K.P. Shadangi and K. Mohanty, Fuel, 117, 372 (2014); https://doi.org/10.1016/j.fuel.2013.09.001
Mashuni, M. Jahiding, W.S. Ilmawati, I. Kurniasih, W. Wati, Muzirah and M. Burhan, J. Phys.: Conf. Ser., 846, 012026 (2017); https://doi.org/10.1088/1742-6596/846/1/012026
D. Pradhan, R.K. Singh, H. Bendu and R. Mund, Energy Convers. Manage., 108, 529 (2016); https://doi.org/10.1016/j.enconman.2015.11.042
F. Huang, Y. Yu and H. Huang, J. Anal. Appl. Pyr., 130, 36 (2018); https://doi.org/10.1016/j.jaap.2018.01.030
C. Zhao, E. Jiang and A. Chen, J. Energy Inst., 90, 902 (2017); https://doi.org/10.1016/j.joei.2016.08.004
M. Brebu and C. Vasile, Cellul. Chem. Technol., 44, 353 (2010).
D. Ardilla, Tamrin, B. Wirjosentono, Eddyanto and M.S. Siregar, Chem. Mater. Res., 7, 71 (2015).
T. Stevic, T. Beric, K. Šavikin, M. Sokovic, D. Godevac, I. Dimkic and S. Stankovic, Ind. Crops Prod., 55, 116 (2014); https://doi.org/10.1016/j.indcrop.2014.02.011
S. Sukrasno, D.L. Aulifa, Y. Karlina and N.P. Aryantha, Asian J. Pharm. Sci., 11, 28 (2016); https://doi.org/10.1016/j.ajps.2015.10.019