Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Reaction of Carbidopa with cis-[Cr(C2O4)2(H2O)2]− in Aqueous Medium: A Kinetic, Mechanistic and Antiparkinsonian Study of the Product Complex
Corresponding Author(s) : Sudhanshu Sekhar Rout
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
For the treatment of Parkinson′s disease, the second most common neurodegenerative disorder, requires a combination of levodopa with a peripheral decarboxylase inhibitor, such as carbidopa which provides a symptomatic relief to patients. Reaction of carbidopa with cis-[Cr(C2O4)2(H2O)2]– has been carried out in aqueous medium over the range 35 ≤ t ≤ 50 ºC, 4.0 ≤ pH ≤ 6.0 , 3.75 × 10-3 mol dm-3 ≤ [carbidopa] ≤ 9.38 × 10-3 mol dm-3, I (KNO3) = 0.1 mol dm-3. There is outersphere association between cis-[Cr(C2O4)2(H2O)2]– and conjugate base of carbidopa followed by first chelation. The characterization of the product was performed by using NMR and infrared spectroscopies. The product showed better antiparkinsonian activity than the combination of levodopa and carbidopa.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.J. Armstrong and M.S. Okun, JAMA, 323, 548 (2020); https://doi.org/10.1001/jama.2019.22360
- S.Z.A. Zaidi and N. Fatima, Eur. Chem. Bull., 3, 648 (2014); https://doi.org/10.17628/ECB.2014.3.648
- V.J. Lotti and C.C. Porter, J. Pharmacol. Exp. Ther., 172, 406 (1970).
- R.P. Lesser, S. Fahn, S.R. Snider, L.J. Cote, W.P. Isgreen and R.E. Barrett, Neurology, 29, 1253 (1979); https://doi.org/10.1212/WNL.29.9_Part_1.1253
- C.D. Marsden, J.D. Parkes and N. Quinn, eds.: C.D. Marsden and S. Fahn, Movement Disorders, Butterworth: London, p. 96 (1982).
- W. Lovenberg, H. Weissbach and S. Undenfriend, J. Biol. Chem., 237, 89 (1962).
- C. Borri-Voltattorni, A. Minelli and P. Borri, FEBS Lett., 75, 277 (1977); https://doi.org/10.1016/0014-5793(77)80102-6
- C.C. Porter, L.S. Watson, D.C. Titus, J.A. Totaro and S.S. Byer, J. Pharmacol., 11, 1067 (1962).
- J.R. Bianchine, F.S. Messiha and T.J. Preziosi, Adv. Neurol., 2, 101 (1973).
- M.E. Jaffe, Adv. Neurol., 2, 161 (1973).
- J. Cedarbaum, H. Kutt, A. Dhar, S. Watkins and F. McDowell, Clin. Neuropharmacol., 9, 153 (1986); https://doi.org/10.1097/00002826-198604000-00006
- S. Rao and D. Calne, Adv. Neurol., 3, 73 (1973).
- M. Szablowicz and E. Kita, Transition Metal Chem., 30, 623 (2005); https://doi.org/10.1007/s11243-005-4588-z
- M. Pazderska-Szablowicz, A. Bialkowska and E. Kita, Transition Met. Chem., 31, 413 (2006); https://doi.org/10.1007/s11243-006-0010-8
- B.K. Aziz and D.I. Tofiq, Int. J. Chem. Environ. Eng., 3, 34 (2012).
- I.A. Khan and Kabir-Ud-Din, J. Inorg. Nucl. Chem., 43, 1082 (1981); https://doi.org/10.1016/0022-1902(81)80188-1
- I.A. Khan and Kabir-ud-Din, Indian J. Chem., 23A, 98 (1984).
- I.A. Khan, M. Sahid and Kabir-ud-Din, Indian J. Chem., 22A, 382 (1983).
- S.C. Tyagi and A. Aziz Khan, J. Inorg. Nucl. Chem., 40, 1899 (1978); https://doi.org/10.1016/0022-1902(78)80251-6
- I.A. Khan and Kabir-Ud-Din, Int. J. Chem. Kinet., 17, 1263 (1985); https://doi.org/10.1002/kin.550171203
- I.A. Khan, M. Sahid and Kabir-ud-Din, J. Chem. Soc., Dalton Trans., 10, 3007 (1990).
- J.K. Dei, N.N. Pasupalak and P. Mohanty, Transition Met. Chem., 22, 516 (1997); https://doi.org/10.1023/A:1018579700786
- I.A. Khan, M. Sahid and Kabir-ud-Din, J. Indian Chem. Soc., 69, 864 (1992).
- D. Banerjea and S.D. Chaudhuri, J. Inorg. Nucl. Chem., 30, 871 (1968); https://doi.org/10.1016/0022-1902(68)80449-X
- Kabir-ud-Din and G.J. Khan, Proc. Indian Acad. Sci. (Chem. Sci.), 107, 11 (1995).
- M.A. Abdullah, J. Barrett and P. O’Brien, J. Chem. Soc., Dalton Trans., 8, 1647 (1984); https://doi.org/10.1039/dt9840001647
- B.K. Niogy and G.S. De, Proc. Indian Acad. Sci. (Chem. Sci.), 92, 153 (1983); https://doi.org/10.1007/BF02840725
- B.K. Niogy and G.S. De, Indian J. Chem., 24A, 208 (1985).
- R.E. Hamm, R.L. Johnson, R.N. Perkins and R.E. Davis, J. Am. Chem. Soc., 80, 4469 (1958); https://doi.org/10.1021/ja01550a008
- M.F. Abdel-Messih, J. Coord. Chem., 66, 1519 (2013); https://doi.org/10.1080/00958972.2013.779685
- V.C.H. Langford and H.B. Gray, Ligand Substitution Processes, W. A. Benjamin, Inc.: New York (1965).
- A.G. MacDiarmid, Inorganic Syntheses, McGraw-Hill Book Company: New York, vol. 17, p. 149 (1979).
- H.A. Adedeji, I.O. Ishola and O.O. Adeyemi, Prog. Neuropsychopharmacol. Biol. Psychiatry, 48, 245 (2014); https://doi.org/10.1016/j.pnpbp.2013.10.014
- Remington: The Science and Practice of Pharmacy, edn 22, vol. 1, p. 1310 (2013).
- T.W. Kallen and E.J. Senko, Inorg. Chem., 22, 2924 (1983); https://doi.org/10.1021/ic00162a032
- R.B. Jordan, Reaction Mechanism of Inorganic and Organometallic Systems, Oxford University Press: New York (1991).
- K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination Compounds, edn 5, John Wiley & Sons Inc. (1997).
- C.N.R. Rao, Chemical Application of Infrared Spectroscopy, Academic Press, New York (1963).
- I.A. Khan, M. Shahid and Kabir-ud-Din, Transition Met. Chem., 12, 393 (1987); https://doi.org/10.1007/BF01171644
- S. Mohanty, S. Anand, G.S. Brahma and P. Mohanty, J. Indian Chem. Soc., 80, 810 (2003).
- J. Behera, G.S. Brahma and P. Mohanty, J. Indian Chem. Soc., 78, 123 (2001).
- S.C. Dash, G.S. Brahma, R. Das, N.N. Das and P. Mohanty, Indian J. Chem., 45A, 2406 (2006).
- D.K. Baral, S.S. Rout, J. Behera, S.C. Si and P. Mohanty, Transition Met. Chem., 36, 231 (2011); https://doi.org/10.1007/s11243-011-9460-8
- S.S. Rout, D.M. Kar, S. Pattanaik, S.C. Si and P. Mohanty, Asian J. Chem., 29, 1555 (2017); https://doi.org/10.14233/ajchem.2017.20573
References
M.J. Armstrong and M.S. Okun, JAMA, 323, 548 (2020); https://doi.org/10.1001/jama.2019.22360
S.Z.A. Zaidi and N. Fatima, Eur. Chem. Bull., 3, 648 (2014); https://doi.org/10.17628/ECB.2014.3.648
V.J. Lotti and C.C. Porter, J. Pharmacol. Exp. Ther., 172, 406 (1970).
R.P. Lesser, S. Fahn, S.R. Snider, L.J. Cote, W.P. Isgreen and R.E. Barrett, Neurology, 29, 1253 (1979); https://doi.org/10.1212/WNL.29.9_Part_1.1253
C.D. Marsden, J.D. Parkes and N. Quinn, eds.: C.D. Marsden and S. Fahn, Movement Disorders, Butterworth: London, p. 96 (1982).
W. Lovenberg, H. Weissbach and S. Undenfriend, J. Biol. Chem., 237, 89 (1962).
C. Borri-Voltattorni, A. Minelli and P. Borri, FEBS Lett., 75, 277 (1977); https://doi.org/10.1016/0014-5793(77)80102-6
C.C. Porter, L.S. Watson, D.C. Titus, J.A. Totaro and S.S. Byer, J. Pharmacol., 11, 1067 (1962).
J.R. Bianchine, F.S. Messiha and T.J. Preziosi, Adv. Neurol., 2, 101 (1973).
M.E. Jaffe, Adv. Neurol., 2, 161 (1973).
J. Cedarbaum, H. Kutt, A. Dhar, S. Watkins and F. McDowell, Clin. Neuropharmacol., 9, 153 (1986); https://doi.org/10.1097/00002826-198604000-00006
S. Rao and D. Calne, Adv. Neurol., 3, 73 (1973).
M. Szablowicz and E. Kita, Transition Metal Chem., 30, 623 (2005); https://doi.org/10.1007/s11243-005-4588-z
M. Pazderska-Szablowicz, A. Bialkowska and E. Kita, Transition Met. Chem., 31, 413 (2006); https://doi.org/10.1007/s11243-006-0010-8
B.K. Aziz and D.I. Tofiq, Int. J. Chem. Environ. Eng., 3, 34 (2012).
I.A. Khan and Kabir-Ud-Din, J. Inorg. Nucl. Chem., 43, 1082 (1981); https://doi.org/10.1016/0022-1902(81)80188-1
I.A. Khan and Kabir-ud-Din, Indian J. Chem., 23A, 98 (1984).
I.A. Khan, M. Sahid and Kabir-ud-Din, Indian J. Chem., 22A, 382 (1983).
S.C. Tyagi and A. Aziz Khan, J. Inorg. Nucl. Chem., 40, 1899 (1978); https://doi.org/10.1016/0022-1902(78)80251-6
I.A. Khan and Kabir-Ud-Din, Int. J. Chem. Kinet., 17, 1263 (1985); https://doi.org/10.1002/kin.550171203
I.A. Khan, M. Sahid and Kabir-ud-Din, J. Chem. Soc., Dalton Trans., 10, 3007 (1990).
J.K. Dei, N.N. Pasupalak and P. Mohanty, Transition Met. Chem., 22, 516 (1997); https://doi.org/10.1023/A:1018579700786
I.A. Khan, M. Sahid and Kabir-ud-Din, J. Indian Chem. Soc., 69, 864 (1992).
D. Banerjea and S.D. Chaudhuri, J. Inorg. Nucl. Chem., 30, 871 (1968); https://doi.org/10.1016/0022-1902(68)80449-X
Kabir-ud-Din and G.J. Khan, Proc. Indian Acad. Sci. (Chem. Sci.), 107, 11 (1995).
M.A. Abdullah, J. Barrett and P. O’Brien, J. Chem. Soc., Dalton Trans., 8, 1647 (1984); https://doi.org/10.1039/dt9840001647
B.K. Niogy and G.S. De, Proc. Indian Acad. Sci. (Chem. Sci.), 92, 153 (1983); https://doi.org/10.1007/BF02840725
B.K. Niogy and G.S. De, Indian J. Chem., 24A, 208 (1985).
R.E. Hamm, R.L. Johnson, R.N. Perkins and R.E. Davis, J. Am. Chem. Soc., 80, 4469 (1958); https://doi.org/10.1021/ja01550a008
M.F. Abdel-Messih, J. Coord. Chem., 66, 1519 (2013); https://doi.org/10.1080/00958972.2013.779685
V.C.H. Langford and H.B. Gray, Ligand Substitution Processes, W. A. Benjamin, Inc.: New York (1965).
A.G. MacDiarmid, Inorganic Syntheses, McGraw-Hill Book Company: New York, vol. 17, p. 149 (1979).
H.A. Adedeji, I.O. Ishola and O.O. Adeyemi, Prog. Neuropsychopharmacol. Biol. Psychiatry, 48, 245 (2014); https://doi.org/10.1016/j.pnpbp.2013.10.014
Remington: The Science and Practice of Pharmacy, edn 22, vol. 1, p. 1310 (2013).
T.W. Kallen and E.J. Senko, Inorg. Chem., 22, 2924 (1983); https://doi.org/10.1021/ic00162a032
R.B. Jordan, Reaction Mechanism of Inorganic and Organometallic Systems, Oxford University Press: New York (1991).
K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination Compounds, edn 5, John Wiley & Sons Inc. (1997).
C.N.R. Rao, Chemical Application of Infrared Spectroscopy, Academic Press, New York (1963).
I.A. Khan, M. Shahid and Kabir-ud-Din, Transition Met. Chem., 12, 393 (1987); https://doi.org/10.1007/BF01171644
S. Mohanty, S. Anand, G.S. Brahma and P. Mohanty, J. Indian Chem. Soc., 80, 810 (2003).
J. Behera, G.S. Brahma and P. Mohanty, J. Indian Chem. Soc., 78, 123 (2001).
S.C. Dash, G.S. Brahma, R. Das, N.N. Das and P. Mohanty, Indian J. Chem., 45A, 2406 (2006).
D.K. Baral, S.S. Rout, J. Behera, S.C. Si and P. Mohanty, Transition Met. Chem., 36, 231 (2011); https://doi.org/10.1007/s11243-011-9460-8
S.S. Rout, D.M. Kar, S. Pattanaik, S.C. Si and P. Mohanty, Asian J. Chem., 29, 1555 (2017); https://doi.org/10.14233/ajchem.2017.20573