Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Spin Coated Tungsten Oxide for Photocatalytic Degradation of Rhodamine-B Dye
Corresponding Author(s) : P.S. Patil
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
Optical properties including band gap of many wide band gap semiconductor oxides like TiO2, ZnO and SnO2 has limitations over their bare use in photocatalytic applications. Thus, in view of above, tungsten oxide (WO3), an intermediate band gap metal oxide has been selected to explore for photocatalytic degradation application. Present work deals with the preparation of WO3 using a simple chemical solution based spin coating method. The prepared sample has been characterized for structural, morphological and photocatalytic properties. Degradation experiment of dye was carried out systematically at the optimized conditions of pH 4 and contact time (120 min) between dye and catalyst. For optimized conditions, WO3 showed about 75% of degradation of rhodamine-B. This suggests that a huge scope to optimize preparative parameters for WO3 to explore it as an alternative to conventional metal oxides.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Adhikari and D. Sarkar, J. Nanomater., 2015, 269019 (2015); https://doi.org/10.1155/2015/269019
- S.O. Alfaro and A. Martínez-de La Cruz, Appl. Catal. A: Gen., 383, 128 (2010); https://doi.org/10.1016/j.apcata.2010.05.034
- B.K. Bose, IEEE Ind. Electron. Mag., 4, 6 (2010); https://doi.org/10.1109/MIE.2010.935860
- S.T. Holgate, H.S. Koren, J.M. Samet and R.L. Maynard, Air Pollution and Health, Academic Press, edn 1 (1999).
- I. Aslam, C. Cao, W.S. Khan, M. Tanveer, M. Abid, F. Idrees, R. Riasat, M. Tahir, F.K. Butt and Z. Ali, RSC Adv. 4, 37914 (2014); https://doi.org/10.1039/C4RA05724D
- D. Bahnemann, J. Cunningham, M. Fox, E. Pelizzetti, P. Pichat and N. Serpone, eds.: G.R. Helz, R.G. Zepp and D.G. Crosby, Aquatic and Surface Photochemistry, Lewis Publishing: Boca Raton FL, pp 261-316 (1994).
- A.S. Bojinova, C.I. Papazova, I.B. Karadjova and I. Poulios, Eurasian J. Anal. Chem., 3, 34 (2008).
- P. Chatchai, A.Y. Nosaka and Y. Nosaka, Electrochim. Acta, 94, 314 (2013); https://doi.org/10.1016/j.electacta.2013.01.152
- X. Cheng, W. Leng, D. Liu, J. Zhang and C. Cao, Chemosphere, 68, 1976 (2007); https://doi.org/10.1016/j.chemosphere.2007.02.010
- A.W. Rome, Environ. Hist., 1, 6 (1996); https://doi.org/10.2307/3985154
- T.M. Elmorsi, Y.M. Riyad, Z.H. Mohamed and H.M.H. Abd El Bary, J. Hazard. Mater., 174, 352 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.057
- M. Gondal, A. Bagabas, A. Dastageer and A. Khalil, J. Mol. Catal. Chem., 323, 78 (2010); https://doi.org/10.1016/j.molcata.2010.03.019
- A. Zuorro and R. Lavecchia, Desalination Water Treat., 52, 1571 (2014); https://doi.org/10.1080/19443994.2013.787553
- D.L. Puspitarum, Asian J. Appl. Sci. Technol., 2, 18 (2018); https://doi.org/10.35472/281473
- K. Lefatshe, M.Sc. Thesis, Photocatalytic and Antibacterial Properties of Ag/ZnO/NC Nanocomposite, Department of Physics and Astronomy, College of Science, Botswana International University of Science and Technology, Gaborone, Botswana (2017).
- S.A. Fernandez, M.Sc. Thesis, Surface Energy Modification of Metal Oxide to Enhance Electron Injection in Light-emitting Devices: Charge Balance in Hybrid OLEDs and OLETs, Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and Sustainable Development, University of Gävle, Gävle, Sweden (2017).
- A. Henglein, Chem. Rev., 89, 1861 (1989); https://doi.org/10.1021/cr00098a010
- A. Chauhan, D. Sillu and S. Agnihotri, Curr. Drug Metab., 20, 483 (2019); https://doi.org/10.2174/1389200220666181127104812
- C.J. Cramer and D.G. Truhlar, Phys. Chem. Chem. Phys., 11, 10757 (2009); https://doi.org/10.1039/b907148b
- K.P. Nagarjun, S. Sivaranjani and G. Koshy, arXiv Preprint, arXiv: 1210.8293 (2012).
- W. Gao, M. Wang, C. Ran, X. Yao, H. Yang, J. Liu, D. He and J. Bai, Nanoscale, 6, 5498 (2014); https://doi.org/10.1039/c3nr05466g
- D.P. Subagio, M. Srinivasan, M. Lim and T.-T. Lim, Appl. Catal. B, 95, 414 (2010); https://doi.org/10.1016/j.apcatb.2010.01.021
- P. Judeinstein and J. Livage, J. Mater. Chem., 1, 621 (1991); https://doi.org/10.1039/JM9910100621
- L. Zhang, X. Tang, Z. Lu, Z. Wang, L. Li and Y. Xiao, Appl. Surf. Sci., 258, 1719 (2011); https://doi.org/10.1016/j.apsusc.2011.10.022
- M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman and W.M.A.W. Daud, J. Environ. Manage., 198, 78 (2017); https://doi.org/10.1016/j.jenvman.2017.04.099
- P. Kelly, Y. Zhou and A. Postill, Thin Solid Films, 426, 111 (2003); https://doi.org/10.1016/S0040-6090(02)01332-9
- J. Pelleg, L. Zevin, S. Lungo and N. Croitoru, Thin Solid Films, 197, 117 (1991); https://doi.org/10.1016/0040-6090(91)90225-M
- M.C. Barnes, S. Kumar, L. Green, N.-M. Hwang and A.R. Gerson, Surf. Coat. Technol., 190, 321 (2005); https://doi.org/10.1016/j.surfcoat.2004.04.003
- L. Liu, L. Ding, Y. Liu, W. An, S. Lin, Y. Liang and W. Cui, Appl. Catal. B, 201, 92 (2017); https://doi.org/10.1016/j.apcatb.2016.08.005
- X. Li, Y. Hou, Q. Zhao and L. Wang, J. Colloid Interface Sci., 358, 102 (2011); https://doi.org/10.1016/j.jcis.2011.02.052
- V.R. Buch, A.K. Chawla and S.K. Rawal, Mater. Today Proc., 3, 1429 (2016); https://doi.org/10.1016/j.matpr.2016.04.025
- X. Li and J. Ye, J. Phys. Chem. C, 111, 13109 (2007); https://doi.org/10.1021/jp072752m
- M. Muruganandham, N. Sobana and M. Swaminathan, J. Hazard. Mater., 137, 1371 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.030
- S.P. Patil, V.K. Mahajan, V.S. Shrivastava and G. Sonawane, Iran. Chem. Commun., 5, 417 (2017).
- G. Ma, J. Lu, Q. Meng, H. Lv, L. Shui, Y. Zhang, M. Jin, Z. Chen, M. Yuan, R. Nötzel, X. Wang, C. Wang, J.-M. Liu and G. Zhou, Appl. Surf. Sci., 451, 306 (2018); https://doi.org/10.1016/j.apsusc.2018.04.236
- G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, H. Ala’a, M. Naushad and F.J. Stadler, Catal. Today, 335, 437 (2019); https://doi.org/10.1016/j.cattod.2019.03.063
- P. Jansanthea, W. Chomkitichai, J. Ketwaraporn, P. Pookmanee and S. Phanichphant, J. Austr. Ceram. Soc., 55, 719 (2019); https://doi.org/10.1007/s41779-018-0283-3
- M. Davis, W.M. Hikal, C. Gümeci and L.J. Hope-Weeks, Catal. Sci. Technol., 2, 922 (2012); https://doi.org/10.1039/c2cy20020a
- H. Huang, J. Zhang, L. Jiang and Z. Zang, J. Alloys Compd., 718, 112 (2017); https://doi.org/10.1016/j.jallcom.2017.05.132
- S.P. Patil, B. Bethi, G.H. Sonawane, V.S. Shrivastava and S. Sonawane, J. Ind. Eng. Chem., 34, 356 (2016); https://doi.org/10.1016/j.jiec.2015.12.002
- S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil and K. Yong, J. Phys. D Appl. Phys., 43, 015501 (2010); https://doi.org/10.1088/0022-3727/43/1/015501
- K.V. Anand, J.A. Kumar, K. Keerthana, P. Deb, S. Tamilselvan, J. Theerthagiri, V. Rajeswari, S.M. Selvan Sekaran and K. Govindaraju, ChemistrySelect, 4, 5178 (2019); https://doi.org/10.1002/slct.201900213
- C.R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B.S. Benjamin, A.M. Ezhil Raj, K. Jeyadheepan and C. Sanjeeviraja, Ceram. Int., 41,9301 (2015); https://doi.org/10.1016/j.ceramint.2015.03.238
- X. Zhao and Y. Zhu, Environ. Sci. Technol., 40, 3367 (2006); https://doi.org/10.1021/es052029e
- J. Shang, W. Li and Y.F. Zhu, J. Mol. Catal. Chem., 202, 187 (2003); https://doi.org/10.1016/S1381-1169(03)00200-0
References
S. Adhikari and D. Sarkar, J. Nanomater., 2015, 269019 (2015); https://doi.org/10.1155/2015/269019
S.O. Alfaro and A. Martínez-de La Cruz, Appl. Catal. A: Gen., 383, 128 (2010); https://doi.org/10.1016/j.apcata.2010.05.034
B.K. Bose, IEEE Ind. Electron. Mag., 4, 6 (2010); https://doi.org/10.1109/MIE.2010.935860
S.T. Holgate, H.S. Koren, J.M. Samet and R.L. Maynard, Air Pollution and Health, Academic Press, edn 1 (1999).
I. Aslam, C. Cao, W.S. Khan, M. Tanveer, M. Abid, F. Idrees, R. Riasat, M. Tahir, F.K. Butt and Z. Ali, RSC Adv. 4, 37914 (2014); https://doi.org/10.1039/C4RA05724D
D. Bahnemann, J. Cunningham, M. Fox, E. Pelizzetti, P. Pichat and N. Serpone, eds.: G.R. Helz, R.G. Zepp and D.G. Crosby, Aquatic and Surface Photochemistry, Lewis Publishing: Boca Raton FL, pp 261-316 (1994).
A.S. Bojinova, C.I. Papazova, I.B. Karadjova and I. Poulios, Eurasian J. Anal. Chem., 3, 34 (2008).
P. Chatchai, A.Y. Nosaka and Y. Nosaka, Electrochim. Acta, 94, 314 (2013); https://doi.org/10.1016/j.electacta.2013.01.152
X. Cheng, W. Leng, D. Liu, J. Zhang and C. Cao, Chemosphere, 68, 1976 (2007); https://doi.org/10.1016/j.chemosphere.2007.02.010
A.W. Rome, Environ. Hist., 1, 6 (1996); https://doi.org/10.2307/3985154
T.M. Elmorsi, Y.M. Riyad, Z.H. Mohamed and H.M.H. Abd El Bary, J. Hazard. Mater., 174, 352 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.057
M. Gondal, A. Bagabas, A. Dastageer and A. Khalil, J. Mol. Catal. Chem., 323, 78 (2010); https://doi.org/10.1016/j.molcata.2010.03.019
A. Zuorro and R. Lavecchia, Desalination Water Treat., 52, 1571 (2014); https://doi.org/10.1080/19443994.2013.787553
D.L. Puspitarum, Asian J. Appl. Sci. Technol., 2, 18 (2018); https://doi.org/10.35472/281473
K. Lefatshe, M.Sc. Thesis, Photocatalytic and Antibacterial Properties of Ag/ZnO/NC Nanocomposite, Department of Physics and Astronomy, College of Science, Botswana International University of Science and Technology, Gaborone, Botswana (2017).
S.A. Fernandez, M.Sc. Thesis, Surface Energy Modification of Metal Oxide to Enhance Electron Injection in Light-emitting Devices: Charge Balance in Hybrid OLEDs and OLETs, Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and Sustainable Development, University of Gävle, Gävle, Sweden (2017).
A. Henglein, Chem. Rev., 89, 1861 (1989); https://doi.org/10.1021/cr00098a010
A. Chauhan, D. Sillu and S. Agnihotri, Curr. Drug Metab., 20, 483 (2019); https://doi.org/10.2174/1389200220666181127104812
C.J. Cramer and D.G. Truhlar, Phys. Chem. Chem. Phys., 11, 10757 (2009); https://doi.org/10.1039/b907148b
K.P. Nagarjun, S. Sivaranjani and G. Koshy, arXiv Preprint, arXiv: 1210.8293 (2012).
W. Gao, M. Wang, C. Ran, X. Yao, H. Yang, J. Liu, D. He and J. Bai, Nanoscale, 6, 5498 (2014); https://doi.org/10.1039/c3nr05466g
D.P. Subagio, M. Srinivasan, M. Lim and T.-T. Lim, Appl. Catal. B, 95, 414 (2010); https://doi.org/10.1016/j.apcatb.2010.01.021
P. Judeinstein and J. Livage, J. Mater. Chem., 1, 621 (1991); https://doi.org/10.1039/JM9910100621
L. Zhang, X. Tang, Z. Lu, Z. Wang, L. Li and Y. Xiao, Appl. Surf. Sci., 258, 1719 (2011); https://doi.org/10.1016/j.apsusc.2011.10.022
M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman and W.M.A.W. Daud, J. Environ. Manage., 198, 78 (2017); https://doi.org/10.1016/j.jenvman.2017.04.099
P. Kelly, Y. Zhou and A. Postill, Thin Solid Films, 426, 111 (2003); https://doi.org/10.1016/S0040-6090(02)01332-9
J. Pelleg, L. Zevin, S. Lungo and N. Croitoru, Thin Solid Films, 197, 117 (1991); https://doi.org/10.1016/0040-6090(91)90225-M
M.C. Barnes, S. Kumar, L. Green, N.-M. Hwang and A.R. Gerson, Surf. Coat. Technol., 190, 321 (2005); https://doi.org/10.1016/j.surfcoat.2004.04.003
L. Liu, L. Ding, Y. Liu, W. An, S. Lin, Y. Liang and W. Cui, Appl. Catal. B, 201, 92 (2017); https://doi.org/10.1016/j.apcatb.2016.08.005
X. Li, Y. Hou, Q. Zhao and L. Wang, J. Colloid Interface Sci., 358, 102 (2011); https://doi.org/10.1016/j.jcis.2011.02.052
V.R. Buch, A.K. Chawla and S.K. Rawal, Mater. Today Proc., 3, 1429 (2016); https://doi.org/10.1016/j.matpr.2016.04.025
X. Li and J. Ye, J. Phys. Chem. C, 111, 13109 (2007); https://doi.org/10.1021/jp072752m
M. Muruganandham, N. Sobana and M. Swaminathan, J. Hazard. Mater., 137, 1371 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.030
S.P. Patil, V.K. Mahajan, V.S. Shrivastava and G. Sonawane, Iran. Chem. Commun., 5, 417 (2017).
G. Ma, J. Lu, Q. Meng, H. Lv, L. Shui, Y. Zhang, M. Jin, Z. Chen, M. Yuan, R. Nötzel, X. Wang, C. Wang, J.-M. Liu and G. Zhou, Appl. Surf. Sci., 451, 306 (2018); https://doi.org/10.1016/j.apsusc.2018.04.236
G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, H. Ala’a, M. Naushad and F.J. Stadler, Catal. Today, 335, 437 (2019); https://doi.org/10.1016/j.cattod.2019.03.063
P. Jansanthea, W. Chomkitichai, J. Ketwaraporn, P. Pookmanee and S. Phanichphant, J. Austr. Ceram. Soc., 55, 719 (2019); https://doi.org/10.1007/s41779-018-0283-3
M. Davis, W.M. Hikal, C. Gümeci and L.J. Hope-Weeks, Catal. Sci. Technol., 2, 922 (2012); https://doi.org/10.1039/c2cy20020a
H. Huang, J. Zhang, L. Jiang and Z. Zang, J. Alloys Compd., 718, 112 (2017); https://doi.org/10.1016/j.jallcom.2017.05.132
S.P. Patil, B. Bethi, G.H. Sonawane, V.S. Shrivastava and S. Sonawane, J. Ind. Eng. Chem., 34, 356 (2016); https://doi.org/10.1016/j.jiec.2015.12.002
S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil and K. Yong, J. Phys. D Appl. Phys., 43, 015501 (2010); https://doi.org/10.1088/0022-3727/43/1/015501
K.V. Anand, J.A. Kumar, K. Keerthana, P. Deb, S. Tamilselvan, J. Theerthagiri, V. Rajeswari, S.M. Selvan Sekaran and K. Govindaraju, ChemistrySelect, 4, 5178 (2019); https://doi.org/10.1002/slct.201900213
C.R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B.S. Benjamin, A.M. Ezhil Raj, K. Jeyadheepan and C. Sanjeeviraja, Ceram. Int., 41,9301 (2015); https://doi.org/10.1016/j.ceramint.2015.03.238
X. Zhao and Y. Zhu, Environ. Sci. Technol., 40, 3367 (2006); https://doi.org/10.1021/es052029e
J. Shang, W. Li and Y.F. Zhu, J. Mol. Catal. Chem., 202, 187 (2003); https://doi.org/10.1016/S1381-1169(03)00200-0