Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrothermal Synthesis and Electrochemical Characterization of Hexagonal Zr-CuS Nanocomposite and its Charge Storage Capacity
Corresponding Author(s) : D. Geetha
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
Hexagonal zirconia doped CuS nanaocomposites were successfully synthesized through a simple mild hydrothermal synthesis. The higher dopent concentration of zirconia produces increased mesoporous homogeneous nanostructures. The structure and nature of the resulting product (Zr-CuS) were characterized by XRD, XPS, SEM/EDS and TEM techniques. The results show that zirconia is homogeneously dispersed on CuS and well separated from one another. Electrochemical studies show that the final product (Zr-CuS) possesses high specific surface area. An increase in zirconia concentration might increase the mesopore volume and a widening of microporosity. Zirconia doped CuS composite exhibits high electrochemical performance with a high capacitance of 949.47 F g-1. The presence of zirconia in CuS improves the capacitive behaviour of samples. Therefore, Zr-CuS could be promising nanocomposite for energy storage device.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.C. Pierre and G.M. Pajonk, Chem. Rev., 102, 4243 (2002); https://doi.org/10.1021/cr0101306
- P.H.C. Camargo, K.G. Satyanarayana and F. Wypych, Mater. Res., 12, 1 (2009); https://doi.org/10.1590/S1516-14392009000100002
- Z. Lu, Z. Zhu, X. Zheng, Y. Qiao, J. Guo and C.M. Li, Nanotechnology, 22, 155604 (2011); https://doi.org/10.1088/0957-4484/22/15/155604
- K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah and K. Fujimoto, Catal. Lett., 76, 71 (2001); https://doi.org/10.1023/A:1016711722721
- T. Chraska, A.H. King and C.C. Berndt, Mater. Sci. Eng. A, 286, 169 (2000); https://doi.org/10.1016/S0921-5093(00)00625-0
- H. Mudila, S. Rana and M. Zaidi, J. Anal. Sci. Technol., 7, 3 (2016); https://doi.org/10.1186/s40543-016-0084-7
- D.J. Guo, X.P. Qiu, W.T. Zhu and L.Q. Chen, Appl. Catal. B, 89, 597 (2009); https://doi.org/10.1016/j.apcatb.2009.01.025
- J.W. Brown, P.S. Ramesh and D. Geetha, Mater. Res. Express, 5, 024007 (2018); https://doi.org/10.1088/2053-1591/aaad55
- G.D. Wilk, R.M. Wallace and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001); https://doi.org/10.1063/1.1361065
- K.K. Srivastava, R.N. Patil, C.B. Choudhary, K.V.G.K. Gokhale and E.C. Subbarao, Trans. J. Br. Ceram. Soc., 73, 85 (1974).
- P. Surekha, D. Geetha and P.S. Ramesh, J. Mater. Sci.: Mater. Electron, 28, 15387 (2017); https://doi.org/10.1007/s10854-017-7424-2
- Y.X. Bai, J.J. Wu, X.P. Qiu, J.Y. Xi, J.S. Wang, J. Li, W. Zhu and L. Chen, Appl. Catal. B, 73, 144 (2007); https://doi.org/10.1016/j.apcatb.2006.06.026
- J. Nair, P. Nair, F. Mizukami, Y. Oosawa and T. Okubo, Mater. Res. Bull., 34, 1275 (1999); https://doi.org/10.1016/S0025-5408(99)00113-0
- G. Colon, M.C. Hidalgo, G. Munuera, I. Ferino, M.G. Cutrufello and J.A. Navio, Appl. Catal. B, 63, 45 (2006); https://doi.org/10.1016/j.apcatb.2005.09.008
- S. Zhou, G. Garnweitner, M. Niederberger and M. Antonietti, Lagmuir, 23, 9178 (2007); https://doi.org/10.1021/la700837u
- L.Z. Pei, L.J. Yang, J.F. Wang, C.G. Fan and J.L. Hu, J. Surf. Sci. Nanotechnol., 8, 384 (2010); https://doi.org/10.1380/ejssnt.2010.384
- A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmii and A.I. Kryukov, J. Mol. Catal. A, 212, 259 (2004); https://doi.org/10.1016/j.molcata.2003.11.010
- S. Hara and M. Miyayama, Solid State Ion., 168, 111 (2004); https://doi.org/10.1016/j.ssi.2004.01.030
- B.-E. Conway and W.G. Pell, J. Power Sources, 105, 169 (2002); https://doi.org/10.1016/S0378-7753(01)00936-3
- K. Gurushantha, K.S. Anantharaju, L. Renuka, H.P. Nagaswarupa, S.C. Sharma, S.C. Prashantha, Y.S. Vidya and H. Nagabhushana, RSC Adv., 7, 12690 (2017); https://doi.org/10.1039/C6RA25823A
- D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu and T.J. Bandosz, Adv. Funct. Mater., 19, 438 (2009); https://doi.org/10.1002/adfm.200801236
- Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen Energy, 34, 4889 (2009); https://doi.org/10.1016/j.ijhydene.2009.04.005
- A. Elmouwahidi, E. Bailon-Garcia, A.F. Perez-Cadenas, F.J. MaldonadoHodar, J. Castelo-Quiben and F. Carrasco-Marin, Electrochim. Acta, 259, 803 (2018); https://doi.org/10.1016/j.electacta.2017.11.041
- M. Nasibi, M.A. Golozar and G. Rashed, J. Power Sources, 206, 108 (2012); https://doi.org/10.1016/j.jpowsour.2012.01.052
- G.H. Jeong, H.-M. Lee, J.-G. Kang, H. Lee, C.-K. Kim, J.-H. Lee, J.- H. Kim and S.-W. Kim, Appl. Mater., 6, 20171 (2014); https://doi.org/10.1021/am505747w
- D. Geetha, P. Surekha and P.S. Ramesh, J. Mater. Sci.: Mater. Electron., 28, 15387 (2017); https://doi.org/10.1007/s10854-017-7424-2
References
A.C. Pierre and G.M. Pajonk, Chem. Rev., 102, 4243 (2002); https://doi.org/10.1021/cr0101306
P.H.C. Camargo, K.G. Satyanarayana and F. Wypych, Mater. Res., 12, 1 (2009); https://doi.org/10.1590/S1516-14392009000100002
Z. Lu, Z. Zhu, X. Zheng, Y. Qiao, J. Guo and C.M. Li, Nanotechnology, 22, 155604 (2011); https://doi.org/10.1088/0957-4484/22/15/155604
K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah and K. Fujimoto, Catal. Lett., 76, 71 (2001); https://doi.org/10.1023/A:1016711722721
T. Chraska, A.H. King and C.C. Berndt, Mater. Sci. Eng. A, 286, 169 (2000); https://doi.org/10.1016/S0921-5093(00)00625-0
H. Mudila, S. Rana and M. Zaidi, J. Anal. Sci. Technol., 7, 3 (2016); https://doi.org/10.1186/s40543-016-0084-7
D.J. Guo, X.P. Qiu, W.T. Zhu and L.Q. Chen, Appl. Catal. B, 89, 597 (2009); https://doi.org/10.1016/j.apcatb.2009.01.025
J.W. Brown, P.S. Ramesh and D. Geetha, Mater. Res. Express, 5, 024007 (2018); https://doi.org/10.1088/2053-1591/aaad55
G.D. Wilk, R.M. Wallace and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001); https://doi.org/10.1063/1.1361065
K.K. Srivastava, R.N. Patil, C.B. Choudhary, K.V.G.K. Gokhale and E.C. Subbarao, Trans. J. Br. Ceram. Soc., 73, 85 (1974).
P. Surekha, D. Geetha and P.S. Ramesh, J. Mater. Sci.: Mater. Electron, 28, 15387 (2017); https://doi.org/10.1007/s10854-017-7424-2
Y.X. Bai, J.J. Wu, X.P. Qiu, J.Y. Xi, J.S. Wang, J. Li, W. Zhu and L. Chen, Appl. Catal. B, 73, 144 (2007); https://doi.org/10.1016/j.apcatb.2006.06.026
J. Nair, P. Nair, F. Mizukami, Y. Oosawa and T. Okubo, Mater. Res. Bull., 34, 1275 (1999); https://doi.org/10.1016/S0025-5408(99)00113-0
G. Colon, M.C. Hidalgo, G. Munuera, I. Ferino, M.G. Cutrufello and J.A. Navio, Appl. Catal. B, 63, 45 (2006); https://doi.org/10.1016/j.apcatb.2005.09.008
S. Zhou, G. Garnweitner, M. Niederberger and M. Antonietti, Lagmuir, 23, 9178 (2007); https://doi.org/10.1021/la700837u
L.Z. Pei, L.J. Yang, J.F. Wang, C.G. Fan and J.L. Hu, J. Surf. Sci. Nanotechnol., 8, 384 (2010); https://doi.org/10.1380/ejssnt.2010.384
A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmii and A.I. Kryukov, J. Mol. Catal. A, 212, 259 (2004); https://doi.org/10.1016/j.molcata.2003.11.010
S. Hara and M. Miyayama, Solid State Ion., 168, 111 (2004); https://doi.org/10.1016/j.ssi.2004.01.030
B.-E. Conway and W.G. Pell, J. Power Sources, 105, 169 (2002); https://doi.org/10.1016/S0378-7753(01)00936-3
K. Gurushantha, K.S. Anantharaju, L. Renuka, H.P. Nagaswarupa, S.C. Sharma, S.C. Prashantha, Y.S. Vidya and H. Nagabhushana, RSC Adv., 7, 12690 (2017); https://doi.org/10.1039/C6RA25823A
D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu and T.J. Bandosz, Adv. Funct. Mater., 19, 438 (2009); https://doi.org/10.1002/adfm.200801236
Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen Energy, 34, 4889 (2009); https://doi.org/10.1016/j.ijhydene.2009.04.005
A. Elmouwahidi, E. Bailon-Garcia, A.F. Perez-Cadenas, F.J. MaldonadoHodar, J. Castelo-Quiben and F. Carrasco-Marin, Electrochim. Acta, 259, 803 (2018); https://doi.org/10.1016/j.electacta.2017.11.041
M. Nasibi, M.A. Golozar and G. Rashed, J. Power Sources, 206, 108 (2012); https://doi.org/10.1016/j.jpowsour.2012.01.052
G.H. Jeong, H.-M. Lee, J.-G. Kang, H. Lee, C.-K. Kim, J.-H. Lee, J.- H. Kim and S.-W. Kim, Appl. Mater., 6, 20171 (2014); https://doi.org/10.1021/am505747w
D. Geetha, P. Surekha and P.S. Ramesh, J. Mater. Sci.: Mater. Electron., 28, 15387 (2017); https://doi.org/10.1007/s10854-017-7424-2