Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structure Analysis of Sulfated Polysaccharides Extracted from Scinaia interrupta: A Experimental and Density Functional Theory Studies
Corresponding Author(s) : Tuhin Ghosh
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
In present report, a combined experimental and theoretical study has been performed to address the isolation procedure and spectroscopic structure elucidation of polysaccharides such as xylomannan isolated from marine red algal source Scinaia interrupta. The structure of the polysaccharides obtained from the red algae of Scinaia interrupta has been studied from NMR, IR and GC-MS spectroscopy. The investigation revealed that red algae contained a backbone of α-(1→4)-linked D-mannopyranosyl residues substituted at 6-position with a single stub of β-D-xylopyranosyl residues. The major polysaccharide, which had 0.6 sulfate groups per monomer unit and an apparent molecular mass of 120 KDa. The backbone structure was optimized at DFT/B3LYP/6-311G(d,p) level of theory and GIAO-NMR studies were performed at B3LYP/6-311++G(2d,p) level of theory followed by mean absolute error calculations of the computed chemical shifts for two possible conformers resulting from the flipping of xylopyranosyl residue. The NMR calculations were in agreement with the experimental findings. The experimental 1H NMR chemical shifts were then correlated with the NBO, Merz Kollman (MK), ChelpG and Mulliken charges of the predicted conformer. A reasonable correlation with the experimental 1H NMR chemical shifts and the computed NBO charges with correlation coefficient of 0.906.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Berteau and B. Mulloy, Glycobiol., 13, 29R (2003); https://doi.org/10.1093/glycob/cwg058
- A.C.E.S. Vilela-Silva, M.O. Castro, A.P. Valente, C.H. Biermann and P.A.S. Mourao, J. Biol. Chem., 277, 379 (2002); https://doi.org/10.1074/jbc.M108496200
- Y. Kariya, B. Mulloy, K. Imai, A. Tominaga, T. Kaneko, A. Asari, K. Suzuki, H. Masuda, M. Kyogashima and T. Ishii, Carbohydr. Res., 339, 1339 (2004); https://doi.org/10.1016/j.carres.2004.02.025
- T. Nishino, C. Nishioka, H. Ura and T. Nagumo, Carbohydr. Res., 255, 213 (1994); https://doi.org/10.1016/S0008-6215(00)90980-7
- T.J. Painter, ed.: G.O. Aspinall, Algal Polysaccharides: In The Polysaccharides, Academic Press: London, vol. 2, pp. 195-285 (1983).
- S. Sattin and A. Bernardi, Trends Biotechnol., 34, 483 (2016); https://doi.org/10.1016/j.tibtech.2016.01.004
- S. Chen, T. Yong, C. Xiao, J. Su, Y. Zhang, C. Jiao and Y. Xie, J. Funct. Foods, 43, 196 (2018); https://doi.org/10.1016/j.jff.2018.02.007
- C. Zhong, G. Cao, K. Rong, Z. Xia, T. Peng, H. Chen and J. Zhou, Colloids Surf. B Biointerfaces, 161, 636 (2018); https://doi.org/10.1016/j.colsurfb.2017.11.042
- S. Mohamed, S.N. Hashim and S.A. Rahman, Trends Food Sci. Technol., 23, 83 (2012); https://doi.org/10.1016/j.tifs.2011.09.001
- F. Liao, A. Yu, J. Yu, D. Wang, Y. Wu, H. Zheng, Y. Meng, D. He, X. Shen and L. Wang, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1092, 320 (2018); https://doi.org/10.1016/j.jchromb.2018.06.027
- T. Ghosh, K. Chattopadhyay, M. Marschall, P. Karmakar, P. Mandal and B. Ray, Glycobiol, 19, 2 (2009a); https://doi.org/10.1093/glycob/cwn092
- S.C. Feldman, S. Reynaldi, C.A. Stortz, A.S. Cerezo and E.B. Damonte, Phytomedicine, 6, 335 (1999); https://doi.org/10.1016/S0944-7113(99)80055-5
- N.M.A. Ponce, C.A. Pujol, E.B. Damonte, M.L. Flores and C.A. Stortz, Carbohydr. Res., 338, 153 (2003); https://doi.org/10.1016/S0008-6215(02)00403-2
- M.S. Pereira, B. Mulloy and P.A.S. Mourao, J. Biol. Chem., 274, 7656 (1999); https://doi.org/10.1074/jbc.274.12.7656
- M.E.R. Duarte, M.A. Cardoso, M.D. Noseda and A.S. Cerezo, Carbohydr. Res., 333, 281 (2001); https://doi.org/10.1016/S0008-6215(01)00149-5
- Y. Liu, T. Junk, Y. Liu, N. Tzeng and R. Perkins, J. Mol. Struct., 1086, 43 (2015); https://doi.org/10.1016/j.molstruc.2015.01.007
- B.H. Besler, K.M. Merz Jr. and P.A. Kollman, J. Comput. Chem., 11, 431 (1990); https://doi.org/10.1002/jcc.540110404
- L.E. Chirlian and M.M. Francl, J. Comput. Chem., 8, 894 (1987); https://doi.org/10.1002/jcc.540080616
- A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); https://doi.org/10.1063/1.445134
- A. Ahmed and J.M. Labavitch, J. Food Biochem., 1, 361 (1978); https://doi.org/10.1111/j.1745-4514.1978.tb00193.x
- M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, Anal. Chem., 28, 350 (1956); https://doi.org/10.1021/ac60111a017
- A.B. Blakeney, P.J. Harris, R.J. Henry and B.A. Stone, Carbohydr. Res., 113, 291 (1983); https://doi.org/10.1016/0008-6215(83)88244-5
- K. Chattopadhyay, C.G. Mateu, P. Mandal, C.A. Pujol, E.B. Damonte and B. Ray, Phytochemistry, 68, 1428 (2007); https://doi.org/10.1016/j.phytochem.2007.02.008
- W.S. York, A.G. Darvill, M. McNeil, T.T. Stevenson and P. Albersheim, Methods Enzymol., 118, 3 (1986); https://doi.org/10.1016/0076-6879(86)18062-1
- J.S. Craigie, Z.C. Wen and J.P. van der Meer, Bot. Mar., 27, 55 (1984); https://doi.org/10.1515/botm.1984.27.2.55
- C. Rochas, M. Lahaye and W. Yaphe, Bot. Mar., 29, 335 (1986); https://doi.org/10.1515/botm.1986.29.4.335
- S.C. Fry, The Growing Plant Cell Wall: Chemical and Metabolic Analysis, Longman Scientific and Technical, Longman Group UK Ltd, pp. 135 (1988).
- T.T. Stevenson and R.H. Furneaux, Carbohydr. Res., 210, 277 (1991); https://doi.org/10.1016/0008-6215(91)80129-B
- A.B. Blakeney and B.A. Stone, Carbohydr. Res., 140, 319 (1985); https://doi.org/10.1016/0008-6215(85)85132-6
- B. Ray and M. Lahaye, Carbohydr. Polym., 66, 408 (2006); https://doi.org/10.1016/j.carbpol.2006.03.027
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- T.T.V. Tran, B.T. Huy, H.B. Truong, M.L. Bui, T.T.T. Thanh and D.Q. Dao, Monatsh. Chem., 149, 197 (2018); https://doi.org/10.1007/s00706-017-2056-z
- M.W. Lodewyk, M.R. Siebert and D.J. Tantillo, Chem. Rev., 112, 1839 (2012); https://doi.org/10.1021/cr200106v
- R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).
- L. Domingo, M. Ríos-Gutiérrez and P. Pérez, Molecules, 21, 748 (2016); https://doi.org/10.3390/molecules21060748
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, N. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-aham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc.: Wallingford CT (2004).
- A.A. Kolender, M.C. Matulewicz and A.S. Cerezo, Carbohydr. Res., 273, 179 (1995); https://doi.org/10.1016/0008-6215(95)00078-8
- P. Mandal, C.A. Pujol, M.J. Carlucci, K. Chattopadhyay, E.B. Damonte and B. Ray, Phytochemistry, 69, 2193 (2008); https://doi.org/10.1016/j.phytochem.2008.05.004
- A.A. Kolender, C.A. Pujol, E.B. Damonte, M.C. Matulewicz and A.S. Cerezo, Carbohydr. Res., 304, 53 (1997); https://doi.org/10.1016/S0008-6215(97)00201-2
- R. Falshaw and R.H. Furneaux, Carbohydr. Res., 307, 325 (1998); https://doi.org/10.1016/S0008-6215(98)00030-5
- E. Percival and J.K. Wold, J. Chem. Soc., 5459 (1963); https://doi.org/10.1039/jr9630005459
- S. Mazumder, P.K. Ghosal, C.A. Pujol, M.J. Carlucci, E.B. Damonte and B. Ray, Int. J. Biol. Macromol., 31, 87 (2002); https://doi.org/10.1016/S0141-8130(02)00070-3
- T. Ghosh, C.A. Pujol, E.B. Damonte, S. Sinha and B. Ray, Antivir. Chem. Chemother., 19, 235 (2009); https://doi.org/10.1177/095632020901900603
References
O. Berteau and B. Mulloy, Glycobiol., 13, 29R (2003); https://doi.org/10.1093/glycob/cwg058
A.C.E.S. Vilela-Silva, M.O. Castro, A.P. Valente, C.H. Biermann and P.A.S. Mourao, J. Biol. Chem., 277, 379 (2002); https://doi.org/10.1074/jbc.M108496200
Y. Kariya, B. Mulloy, K. Imai, A. Tominaga, T. Kaneko, A. Asari, K. Suzuki, H. Masuda, M. Kyogashima and T. Ishii, Carbohydr. Res., 339, 1339 (2004); https://doi.org/10.1016/j.carres.2004.02.025
T. Nishino, C. Nishioka, H. Ura and T. Nagumo, Carbohydr. Res., 255, 213 (1994); https://doi.org/10.1016/S0008-6215(00)90980-7
T.J. Painter, ed.: G.O. Aspinall, Algal Polysaccharides: In The Polysaccharides, Academic Press: London, vol. 2, pp. 195-285 (1983).
S. Sattin and A. Bernardi, Trends Biotechnol., 34, 483 (2016); https://doi.org/10.1016/j.tibtech.2016.01.004
S. Chen, T. Yong, C. Xiao, J. Su, Y. Zhang, C. Jiao and Y. Xie, J. Funct. Foods, 43, 196 (2018); https://doi.org/10.1016/j.jff.2018.02.007
C. Zhong, G. Cao, K. Rong, Z. Xia, T. Peng, H. Chen and J. Zhou, Colloids Surf. B Biointerfaces, 161, 636 (2018); https://doi.org/10.1016/j.colsurfb.2017.11.042
S. Mohamed, S.N. Hashim and S.A. Rahman, Trends Food Sci. Technol., 23, 83 (2012); https://doi.org/10.1016/j.tifs.2011.09.001
F. Liao, A. Yu, J. Yu, D. Wang, Y. Wu, H. Zheng, Y. Meng, D. He, X. Shen and L. Wang, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1092, 320 (2018); https://doi.org/10.1016/j.jchromb.2018.06.027
T. Ghosh, K. Chattopadhyay, M. Marschall, P. Karmakar, P. Mandal and B. Ray, Glycobiol, 19, 2 (2009a); https://doi.org/10.1093/glycob/cwn092
S.C. Feldman, S. Reynaldi, C.A. Stortz, A.S. Cerezo and E.B. Damonte, Phytomedicine, 6, 335 (1999); https://doi.org/10.1016/S0944-7113(99)80055-5
N.M.A. Ponce, C.A. Pujol, E.B. Damonte, M.L. Flores and C.A. Stortz, Carbohydr. Res., 338, 153 (2003); https://doi.org/10.1016/S0008-6215(02)00403-2
M.S. Pereira, B. Mulloy and P.A.S. Mourao, J. Biol. Chem., 274, 7656 (1999); https://doi.org/10.1074/jbc.274.12.7656
M.E.R. Duarte, M.A. Cardoso, M.D. Noseda and A.S. Cerezo, Carbohydr. Res., 333, 281 (2001); https://doi.org/10.1016/S0008-6215(01)00149-5
Y. Liu, T. Junk, Y. Liu, N. Tzeng and R. Perkins, J. Mol. Struct., 1086, 43 (2015); https://doi.org/10.1016/j.molstruc.2015.01.007
B.H. Besler, K.M. Merz Jr. and P.A. Kollman, J. Comput. Chem., 11, 431 (1990); https://doi.org/10.1002/jcc.540110404
L.E. Chirlian and M.M. Francl, J. Comput. Chem., 8, 894 (1987); https://doi.org/10.1002/jcc.540080616
A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); https://doi.org/10.1063/1.445134
A. Ahmed and J.M. Labavitch, J. Food Biochem., 1, 361 (1978); https://doi.org/10.1111/j.1745-4514.1978.tb00193.x
M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, Anal. Chem., 28, 350 (1956); https://doi.org/10.1021/ac60111a017
A.B. Blakeney, P.J. Harris, R.J. Henry and B.A. Stone, Carbohydr. Res., 113, 291 (1983); https://doi.org/10.1016/0008-6215(83)88244-5
K. Chattopadhyay, C.G. Mateu, P. Mandal, C.A. Pujol, E.B. Damonte and B. Ray, Phytochemistry, 68, 1428 (2007); https://doi.org/10.1016/j.phytochem.2007.02.008
W.S. York, A.G. Darvill, M. McNeil, T.T. Stevenson and P. Albersheim, Methods Enzymol., 118, 3 (1986); https://doi.org/10.1016/0076-6879(86)18062-1
J.S. Craigie, Z.C. Wen and J.P. van der Meer, Bot. Mar., 27, 55 (1984); https://doi.org/10.1515/botm.1984.27.2.55
C. Rochas, M. Lahaye and W. Yaphe, Bot. Mar., 29, 335 (1986); https://doi.org/10.1515/botm.1986.29.4.335
S.C. Fry, The Growing Plant Cell Wall: Chemical and Metabolic Analysis, Longman Scientific and Technical, Longman Group UK Ltd, pp. 135 (1988).
T.T. Stevenson and R.H. Furneaux, Carbohydr. Res., 210, 277 (1991); https://doi.org/10.1016/0008-6215(91)80129-B
A.B. Blakeney and B.A. Stone, Carbohydr. Res., 140, 319 (1985); https://doi.org/10.1016/0008-6215(85)85132-6
B. Ray and M. Lahaye, Carbohydr. Polym., 66, 408 (2006); https://doi.org/10.1016/j.carbpol.2006.03.027
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
T.T.V. Tran, B.T. Huy, H.B. Truong, M.L. Bui, T.T.T. Thanh and D.Q. Dao, Monatsh. Chem., 149, 197 (2018); https://doi.org/10.1007/s00706-017-2056-z
M.W. Lodewyk, M.R. Siebert and D.J. Tantillo, Chem. Rev., 112, 1839 (2012); https://doi.org/10.1021/cr200106v
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).
L. Domingo, M. Ríos-Gutiérrez and P. Pérez, Molecules, 21, 748 (2016); https://doi.org/10.3390/molecules21060748
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, N. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-aham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc.: Wallingford CT (2004).
A.A. Kolender, M.C. Matulewicz and A.S. Cerezo, Carbohydr. Res., 273, 179 (1995); https://doi.org/10.1016/0008-6215(95)00078-8
P. Mandal, C.A. Pujol, M.J. Carlucci, K. Chattopadhyay, E.B. Damonte and B. Ray, Phytochemistry, 69, 2193 (2008); https://doi.org/10.1016/j.phytochem.2008.05.004
A.A. Kolender, C.A. Pujol, E.B. Damonte, M.C. Matulewicz and A.S. Cerezo, Carbohydr. Res., 304, 53 (1997); https://doi.org/10.1016/S0008-6215(97)00201-2
R. Falshaw and R.H. Furneaux, Carbohydr. Res., 307, 325 (1998); https://doi.org/10.1016/S0008-6215(98)00030-5
E. Percival and J.K. Wold, J. Chem. Soc., 5459 (1963); https://doi.org/10.1039/jr9630005459
S. Mazumder, P.K. Ghosal, C.A. Pujol, M.J. Carlucci, E.B. Damonte and B. Ray, Int. J. Biol. Macromol., 31, 87 (2002); https://doi.org/10.1016/S0141-8130(02)00070-3
T. Ghosh, C.A. Pujol, E.B. Damonte, S. Sinha and B. Ray, Antivir. Chem. Chemother., 19, 235 (2009); https://doi.org/10.1177/095632020901900603