Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrogen Bonding Interaction and Structural Change in Some Aliphatic Alcohol-Water Complexes: A Quantum Mechanical MP4 Study
Corresponding Author(s) : Bipul Bezbaruah
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
Hydrogen bonding interaction in low molecular weight alcohols or lower alcohol (viz. methanol and ethanol) with water molecule is quite common. But, due to the presence of bulky groups in higher alcohols (viz. propanol, butanol and pentanol and their isomers) the hydrogen bonding interaction between alcohol and water molecule is significantly different. In alcohol-water heterodimer complexes, water plays an important role in the stability of such system, alcohol will be interacting with water molecule either as proton donor or proton acceptor mode. Quantum mechanical method, fourth degree Møller-Plesset (MP4) perturbation theory is an important tool for computing the interaction energy between the alcohol-water complexes. The interaction energy (IE) and natural bond orbital (NBO) calculations for some common aliphatic alcohol-water complexes (e.g. methanol, ethanol, propanol, butanol and pentanol) and their isomers were computed by using MP4 method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Marcus, The Properties of Solvents, John Wiley & Sons: Chichester (1998).
- A.J. Kirby, Acc. Chem. Res., 30, 290 (1997); https://doi.org/10.1021/ar960056r
- G.R. Desirajau, Crystal Engineering: The Design of Organic Solids, Elsevier: Amsterdam (1989).
- G.A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag: New York (1991).
- J.A. Gerlt, M.M. Kreevoy, W.W. Cleland and P.A. Frey, Chem. Biol., 4, 259 (1997); https://doi.org/10.1016/S1074-5521(97)90069-7
- F. Franks, Water: A Comprehensive Treatised, Plenum Press, vol. 2 (1973).
- E.E. Fileti, P. Chaudhuri and S. Canuto, Chem. Phys. Lett., 400, 494 (2004); https://doi.org/10.1016/j.cplett.2004.10.149
- F. Franks and J.E. Desnoyers, ed: F. Franks, Water Science Reviews, Cambridge University Press, Cambridge, vol. 1, p. 171 (1985).
- I. Juurinen, K. Nakahara, N. Ando, T. Nishiumi, H. Seta, N. Yoshida, T. Morinaga, M. Itou, T. Ninomiya, Y. Sakurai, E. Salonen, K. Nordlund, K. Hämäläinen and M. Hakala, Phys. Rev. Lett., 107, 197401 (2011); https://doi.org/10.1103/PhysRevLett.107.197401
- S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney and A.K. Soper, Nature, 416, 829 (2002); https://doi.org/10.1038/416829a
- J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D.K. Shuh, H. Ågren and J. Nordgren, Phys. Rev. Lett., 91, 157401 (2003); https://doi.org/10.1103/PhysRevLett.91.157401
- R.K. Lam, J.W. Smith and R.J. Saykally, J. Chem. Phys., 144, 191103 (2016); https://doi.org/10.1063/1.4951010
- T. Sato, A. Chiba and R. Nozaki, J. Chem. Phys., 112, 2924 (2000); https://doi.org/10.1063/1.480865
- A. Coccia, P.L. Indovina, F. Podo and V. Viti, Chem. Phys., 7, 30 (1975); https://doi.org/10.1016/0301-0104(75)85022-1
- Peter I. Nagy, Int. J. Mol. Sci., 15, 19562 (2014); https://doi.org/10.3390/ijms151119562
- T.A. Dolenko, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, I.V. Plastinin, V.I. Yuzhakov and S.V. Patsaeva, J. Phys. Chem. A, 119, 10806 (2015); https://doi.org/10.1021/acs.jpca.5b06678
- F. Franks and D.J.G. Ives, Q. Rev. Chem. Soc., 20, 1 (1966); https://doi.org/10.1039/QR9662000001
- S. Dixit, A. Soper, J. Finney and J. Crain, Europhys. Lett., 59, 377 (2002); https://doi.org/10.1209/epl/i2002-00205-7
- J.L. Finney, D.T. Bowron, R.M. Daniel, P.A. Timmins and M.A. Roberts, Biophys. Chem., 105, 391 (2003); https://doi.org/10.1016/S0301-4622(03)00104-2
- T.S. van Erp and E.J. Meijer, J. Chem. Phys., 118, 8831 (2003); https://doi.org/10.1063/1.1567258
- J. Fidler and P. Rodger, J. Phys. Chem. B, 103, 7695 (1999); https://doi.org/10.1021/jp9907903
- J.E. Del Bene, J. Chem. Phys., 55, 4633 (1971); https://doi.org/10.1063/1.1676800
- S. Kim, M.S. Jhon and H.A. Scheraga, J. Phys. Chem., 92, 7216 (1988); https://doi.org/10.1021/j100337a012
- N. Bakkas, Y. Bouteiller, A. Loutellier, J.P. Perchard and S. Racine, Chem. Phys. Lett., 232, 90 (1995); https://doi.org/10.1016/0009-2614(94)01318-P
- P.A. Stockman, G.A. Blake, F.J. Lovas and R.D. Suenram, J. Chem. Phys., 107, 3782 (1997); https://doi.org/10.1063/1.474736
- L. González, O. Mó and M. Yáñez, J. Chem. Phys., 109, 139 (1998); https://doi.org/10.1063/1.476531
- K.N. Kirschner and R.J. Woods, J. Phys. Chem. A, 105, 4150 (2001); https://doi.org/10.1021/jp004413y
- E.E. Fileti, K. Coutinho and S. Canuto, Adv. Quantum Chem., 47, 51 (2004); https://doi.org/10.1016/S0065-3276(04)47004-X
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewaki, J.V. Ortiz, J.B. Foresmann, J. Ciolowski, A. Namayakkara, M. Challacombe, C.Y. Peng, B.B. Stefanov, P.Y. Ayala, M.W. Wong, J.L. Andres, E.S. Replogle, W. Chen, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez and J.A. Pople, Gaussian 09, Gaussian Inc., Pittsburgh (2009).
- M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct. THEOCHEM, 827, 101 (2007); https://doi.org/10.1016/j.molstruc.2006.05.012
References
Y. Marcus, The Properties of Solvents, John Wiley & Sons: Chichester (1998).
A.J. Kirby, Acc. Chem. Res., 30, 290 (1997); https://doi.org/10.1021/ar960056r
G.R. Desirajau, Crystal Engineering: The Design of Organic Solids, Elsevier: Amsterdam (1989).
G.A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag: New York (1991).
J.A. Gerlt, M.M. Kreevoy, W.W. Cleland and P.A. Frey, Chem. Biol., 4, 259 (1997); https://doi.org/10.1016/S1074-5521(97)90069-7
F. Franks, Water: A Comprehensive Treatised, Plenum Press, vol. 2 (1973).
E.E. Fileti, P. Chaudhuri and S. Canuto, Chem. Phys. Lett., 400, 494 (2004); https://doi.org/10.1016/j.cplett.2004.10.149
F. Franks and J.E. Desnoyers, ed: F. Franks, Water Science Reviews, Cambridge University Press, Cambridge, vol. 1, p. 171 (1985).
I. Juurinen, K. Nakahara, N. Ando, T. Nishiumi, H. Seta, N. Yoshida, T. Morinaga, M. Itou, T. Ninomiya, Y. Sakurai, E. Salonen, K. Nordlund, K. Hämäläinen and M. Hakala, Phys. Rev. Lett., 107, 197401 (2011); https://doi.org/10.1103/PhysRevLett.107.197401
S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney and A.K. Soper, Nature, 416, 829 (2002); https://doi.org/10.1038/416829a
J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D.K. Shuh, H. Ågren and J. Nordgren, Phys. Rev. Lett., 91, 157401 (2003); https://doi.org/10.1103/PhysRevLett.91.157401
R.K. Lam, J.W. Smith and R.J. Saykally, J. Chem. Phys., 144, 191103 (2016); https://doi.org/10.1063/1.4951010
T. Sato, A. Chiba and R. Nozaki, J. Chem. Phys., 112, 2924 (2000); https://doi.org/10.1063/1.480865
A. Coccia, P.L. Indovina, F. Podo and V. Viti, Chem. Phys., 7, 30 (1975); https://doi.org/10.1016/0301-0104(75)85022-1
Peter I. Nagy, Int. J. Mol. Sci., 15, 19562 (2014); https://doi.org/10.3390/ijms151119562
T.A. Dolenko, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, I.V. Plastinin, V.I. Yuzhakov and S.V. Patsaeva, J. Phys. Chem. A, 119, 10806 (2015); https://doi.org/10.1021/acs.jpca.5b06678
F. Franks and D.J.G. Ives, Q. Rev. Chem. Soc., 20, 1 (1966); https://doi.org/10.1039/QR9662000001
S. Dixit, A. Soper, J. Finney and J. Crain, Europhys. Lett., 59, 377 (2002); https://doi.org/10.1209/epl/i2002-00205-7
J.L. Finney, D.T. Bowron, R.M. Daniel, P.A. Timmins and M.A. Roberts, Biophys. Chem., 105, 391 (2003); https://doi.org/10.1016/S0301-4622(03)00104-2
T.S. van Erp and E.J. Meijer, J. Chem. Phys., 118, 8831 (2003); https://doi.org/10.1063/1.1567258
J. Fidler and P. Rodger, J. Phys. Chem. B, 103, 7695 (1999); https://doi.org/10.1021/jp9907903
J.E. Del Bene, J. Chem. Phys., 55, 4633 (1971); https://doi.org/10.1063/1.1676800
S. Kim, M.S. Jhon and H.A. Scheraga, J. Phys. Chem., 92, 7216 (1988); https://doi.org/10.1021/j100337a012
N. Bakkas, Y. Bouteiller, A. Loutellier, J.P. Perchard and S. Racine, Chem. Phys. Lett., 232, 90 (1995); https://doi.org/10.1016/0009-2614(94)01318-P
P.A. Stockman, G.A. Blake, F.J. Lovas and R.D. Suenram, J. Chem. Phys., 107, 3782 (1997); https://doi.org/10.1063/1.474736
L. González, O. Mó and M. Yáñez, J. Chem. Phys., 109, 139 (1998); https://doi.org/10.1063/1.476531
K.N. Kirschner and R.J. Woods, J. Phys. Chem. A, 105, 4150 (2001); https://doi.org/10.1021/jp004413y
E.E. Fileti, K. Coutinho and S. Canuto, Adv. Quantum Chem., 47, 51 (2004); https://doi.org/10.1016/S0065-3276(04)47004-X
M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewaki, J.V. Ortiz, J.B. Foresmann, J. Ciolowski, A. Namayakkara, M. Challacombe, C.Y. Peng, B.B. Stefanov, P.Y. Ayala, M.W. Wong, J.L. Andres, E.S. Replogle, W. Chen, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez and J.A. Pople, Gaussian 09, Gaussian Inc., Pittsburgh (2009).
M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct. THEOCHEM, 827, 101 (2007); https://doi.org/10.1016/j.molstruc.2006.05.012