Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Efficient Removal of Cationic and Anionic Dyes from Aqueous Solutions using Regenerated Silk Fibroin Beads
Corresponding Author(s) : Walaikorn Nitayaphat
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
Regenerated silk fibroin beads (rSFB) were successfully prepared and applied to adsorbing methylene blue and Lanasyn Navy M-DNL. The effects of contact time, initial pH and initial concentration of dyes were analyzed. The experimental results showed that, the adsorption was pH dependent with a high removal efficiency of methylene blue in basic range and high removal of Lanasyn Navy M-DNL in acidic range. The adsorption process was analyzed by using Langmuir and Freundlich isotherm models and the Langmuir isotherm model showed the best fitting to the isotherm data. The maximum adsorption capacities for methylene blue and Lanasyn Navy M-DNL were 47.55 and 78.74 μmg/g, respectively. The kinetics study showed that the adsorption process followed the second order kinetic model. The SEM images demonstrated that after adsorption the dye was adsorbed onto the regenerated silk fibroin beads surface. The adsorbent was stable and active for up to five successive cycles. Regenerated silk fibroin beads showed to be an advantageous adsorbents in terms of availability, which is beneficial for the wastewater treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.S. Jiang, W.B. Fang, Q. Zhao, W.P. Liu, H.B. Zhao and S.K. Le, J. Nanosci. Nanotechnol., 17, 5261 (2017); https://doi.org/10.1166/jnn.2017.13820
- S. Cheng, L. Zhang, A. Ma, H. Xia, J. Peng, C. Li and J. Shu, J. Environ. Sci., 65, 92 (2018); https://doi.org/10.1016/j.jes.2016.12.027
- S, Merouani, O. Hamdaoui, F. Saoudi, M. Chiha and C. Pétrier, J. Hazard. Mater., 175, 593 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.046
- V.K. Gupta and Suhas, J. Environ. Manage., 90, 2313 (2009); https://doi.org/10.1016/j.jenvman.2008.11.017
- V.K. Gupta, R. Kumar, A. Nayak, T.A. Suhas and M.A. Barakat, Adv. Colloid Interface Sci., 193-194, 24 (2013); https://doi.org/10.1016/j.cis.2013.03.003
- M.T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014); https://doi.org/10.1016/j.cis.2014.04.002
- V. Katheresan, J. Kansedo and S.Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018); https://doi.org/10.1016/j.jece.2018.06.060
- A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z.-H. Nazli, H.N. Bhatti and S. Nouren, J. Mol. Liq., 256, 395 (2018); https://doi.org/10.1016/j.molliq.2018.02.034
- J.T. Wang, L.L. Li, M.Y. Zhang, S.L. Liu, L.H. Jiang and Q. Shen, Mater. Sci. Eng. C, 34, 417 (2014); https://doi.org/10.1016/j.msec.2013.09.041
- S.M. Burkinshaw and M. Paraskevas, Dyes Pigm., 87, 225 (2010); https://doi.org/10.1016/j.dyepig.2010.03.031
- S.M. Burkinshaw and M. Paraskevas, Dyes Pigm., 88, 156 (2011); https://doi.org/10.1016/j.dyepig.2010.06.002
- S.L. Xiao, Z.J. Wang, H. Ma, H.J. Yang and W.L. Xu, Adv. Powder Technol., 25, 574 (2014); https://doi.org/10.1016/j.apt.2013.09.007
- P. Song, D.Y. Zhang, X.H. Yao, F. Feng and G.H. Wu, Int. J. Biol. Macromol., 102, 1066 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.009
- K.S. Hossain, N. Nemoto and J. Magoshi, Langmuir, 15, 4114 (1999); https://doi.org/10.1021/la981221+
- J. Zhu, Y. Zhang, H. Shao and X. Hu, Polymer, 49, 2880 (2008); https://doi.org/10.1016/j.polymer.2008.04.049
- A. Albert, Biochem. J., 47, 531 (1950); https://doi.org/10.1042/bj0470531
- W. Nitayaphat and T. Jintakosol, J. Clean. Prod., 87, 850 (2015); https://doi.org/10.1016/j.jclepro.2014.10.003
- A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva and V.C. Almeida, Chem. Eng. J., 168, 722 (2011); https://doi.org/10.1016/j.cej.2011.01.067
- G. McKay, H.S. Blair and J.R. Gardner, J. Appl. Polym. Sci., 27, 3043 (1982); https://doi.org/10.1002/app.1982.070270827
- A. Günay, E. Arslankaya and I. Tosun, J. Hazard. Mater., 146, 362 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.034
- A.S. Abreu, I. Moura and A.V. Machado, Water Purification Academic Press: Massachusetts, USA, pp. 289 (2017).
- I.I. Inyinbor, F.A. Adekola and G.A. Olatunji, Water Resour. Ind., 15, 14 (2016); https://doi.org/10.1016/j.wri.2016.06.001
- R. Rangsanyutthana, T. Jintakosol and W. Nitayaphat, Asian J. Chem., 30, 920 (2018); https://doi.org/10.14233/ajchem.2018.21173
- R. Plesa Chicinas, H. Bedelean, R. Stefan and A. Mãicãneanu, J. Mol. Struct., 1154, 187 (2018); https://doi.org/10.1016/j.molstruc.2017.10.038
- A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, s3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
- I. Chaari, E. Fakhfakh, M. Medhioub and F. Jamoussi, J. Mol. Struct., 1179, 672 (2019); https://doi.org/10.1016/j.molstruc.2018.11.039
- A. Stavrinou, C.A. Aggelopoulos and C.D. Tsakiroglou, J. Environ. Chem. Eng., 6, 6958 (2018); https://doi.org/10.1016/j.jece.2018.10.063
- Z. Huang, Y. Li, W. Chen, J. Shi, N. Zhang, X. Wang, Z. Li, L. Gao and Y. Zhang, Mater. Chem. Phys., 202, 266 (2017); https://doi.org/10.1016/j.matchemphys.2017.09.028
- J. Shen, S. Shahid, I. Amura, A. Sarihan, M. Tian and E.A.C. Emanuelsson, Synth. Met., 245, 151 (2018); https://doi.org/10.1016/j.synthmet.2018.08.015
- Y.S. Ho and G. Mckay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1
- Y.S. Ho and G. Mckay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
- R.S. Juang, F.C. Wu and R.L. Tseng, J. Colloid Interface Sci., 227, 437 (2000); https://doi.org/10.1006/jcis.2000.6912
- J. Zhang, F. Li and Q. Sun, Appl. Surf. Sci., 440, 1219 (2018); https://doi.org/10.1016/j.apsusc.2018.01.258
References
T.S. Jiang, W.B. Fang, Q. Zhao, W.P. Liu, H.B. Zhao and S.K. Le, J. Nanosci. Nanotechnol., 17, 5261 (2017); https://doi.org/10.1166/jnn.2017.13820
S. Cheng, L. Zhang, A. Ma, H. Xia, J. Peng, C. Li and J. Shu, J. Environ. Sci., 65, 92 (2018); https://doi.org/10.1016/j.jes.2016.12.027
S, Merouani, O. Hamdaoui, F. Saoudi, M. Chiha and C. Pétrier, J. Hazard. Mater., 175, 593 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.046
V.K. Gupta and Suhas, J. Environ. Manage., 90, 2313 (2009); https://doi.org/10.1016/j.jenvman.2008.11.017
V.K. Gupta, R. Kumar, A. Nayak, T.A. Suhas and M.A. Barakat, Adv. Colloid Interface Sci., 193-194, 24 (2013); https://doi.org/10.1016/j.cis.2013.03.003
M.T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014); https://doi.org/10.1016/j.cis.2014.04.002
V. Katheresan, J. Kansedo and S.Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018); https://doi.org/10.1016/j.jece.2018.06.060
A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z.-H. Nazli, H.N. Bhatti and S. Nouren, J. Mol. Liq., 256, 395 (2018); https://doi.org/10.1016/j.molliq.2018.02.034
J.T. Wang, L.L. Li, M.Y. Zhang, S.L. Liu, L.H. Jiang and Q. Shen, Mater. Sci. Eng. C, 34, 417 (2014); https://doi.org/10.1016/j.msec.2013.09.041
S.M. Burkinshaw and M. Paraskevas, Dyes Pigm., 87, 225 (2010); https://doi.org/10.1016/j.dyepig.2010.03.031
S.M. Burkinshaw and M. Paraskevas, Dyes Pigm., 88, 156 (2011); https://doi.org/10.1016/j.dyepig.2010.06.002
S.L. Xiao, Z.J. Wang, H. Ma, H.J. Yang and W.L. Xu, Adv. Powder Technol., 25, 574 (2014); https://doi.org/10.1016/j.apt.2013.09.007
P. Song, D.Y. Zhang, X.H. Yao, F. Feng and G.H. Wu, Int. J. Biol. Macromol., 102, 1066 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.009
K.S. Hossain, N. Nemoto and J. Magoshi, Langmuir, 15, 4114 (1999); https://doi.org/10.1021/la981221+
J. Zhu, Y. Zhang, H. Shao and X. Hu, Polymer, 49, 2880 (2008); https://doi.org/10.1016/j.polymer.2008.04.049
A. Albert, Biochem. J., 47, 531 (1950); https://doi.org/10.1042/bj0470531
W. Nitayaphat and T. Jintakosol, J. Clean. Prod., 87, 850 (2015); https://doi.org/10.1016/j.jclepro.2014.10.003
A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva and V.C. Almeida, Chem. Eng. J., 168, 722 (2011); https://doi.org/10.1016/j.cej.2011.01.067
G. McKay, H.S. Blair and J.R. Gardner, J. Appl. Polym. Sci., 27, 3043 (1982); https://doi.org/10.1002/app.1982.070270827
A. Günay, E. Arslankaya and I. Tosun, J. Hazard. Mater., 146, 362 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.034
A.S. Abreu, I. Moura and A.V. Machado, Water Purification Academic Press: Massachusetts, USA, pp. 289 (2017).
I.I. Inyinbor, F.A. Adekola and G.A. Olatunji, Water Resour. Ind., 15, 14 (2016); https://doi.org/10.1016/j.wri.2016.06.001
R. Rangsanyutthana, T. Jintakosol and W. Nitayaphat, Asian J. Chem., 30, 920 (2018); https://doi.org/10.14233/ajchem.2018.21173
R. Plesa Chicinas, H. Bedelean, R. Stefan and A. Mãicãneanu, J. Mol. Struct., 1154, 187 (2018); https://doi.org/10.1016/j.molstruc.2017.10.038
A.M. Aljeboree, A.N. Alshirifi and A.F. Alkaim, Arab. J. Chem., 10, s3381 (2017); https://doi.org/10.1016/j.arabjc.2014.01.020
I. Chaari, E. Fakhfakh, M. Medhioub and F. Jamoussi, J. Mol. Struct., 1179, 672 (2019); https://doi.org/10.1016/j.molstruc.2018.11.039
A. Stavrinou, C.A. Aggelopoulos and C.D. Tsakiroglou, J. Environ. Chem. Eng., 6, 6958 (2018); https://doi.org/10.1016/j.jece.2018.10.063
Z. Huang, Y. Li, W. Chen, J. Shi, N. Zhang, X. Wang, Z. Li, L. Gao and Y. Zhang, Mater. Chem. Phys., 202, 266 (2017); https://doi.org/10.1016/j.matchemphys.2017.09.028
J. Shen, S. Shahid, I. Amura, A. Sarihan, M. Tian and E.A.C. Emanuelsson, Synth. Met., 245, 151 (2018); https://doi.org/10.1016/j.synthmet.2018.08.015
Y.S. Ho and G. Mckay, Chem. Eng. J., 70, 115 (1998); https://doi.org/10.1016/S0923-0467(98)00076-1
Y.S. Ho and G. Mckay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
R.S. Juang, F.C. Wu and R.L. Tseng, J. Colloid Interface Sci., 227, 437 (2000); https://doi.org/10.1006/jcis.2000.6912
J. Zhang, F. Li and Q. Sun, Appl. Surf. Sci., 440, 1219 (2018); https://doi.org/10.1016/j.apsusc.2018.01.258