Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solution and Solid State Study of Nickel(II) Ternary Complexes Containing 5-Aminolevulinic Acid Drug and Amino Acids
Corresponding Author(s) : Salhah D. Al-Qahtani
Asian Journal of Chemistry,
Vol. 32 No. 7 (2020): Vol 32 Issue 7
Abstract
Solution equilibria of the systems Ni(II)-5-aminolevulinic acid as ligand (A) and the amino acids [alanine (Ala), valine (Val), methylamine (Met), imidazole (Imi), Histidine (His), serine (Ser), cysteine (Cys) and penicillamine (Pen)] as ligands (L) have been studied pH-metrically. The stability constants of mixed ligand complexes were calculated with I = 0.10 mol L-1 KNO3 using HYPERQUAD program at 25 ± 0.1 ºC. The log10 X values showed a higher stabilities for the mixed ligand complexes compared to the binary analogues. The synthesis and characterization of the new amino acid mononuclear Ni(II) binary complex [NiA] (1) and ternary complex [NiAL] (2) were achieved via molar conductance, elemental analysis UV-vis, IR, 1H NMR, thermal analysis and magnetic moment. The thermogravimetric analysis of complexes were investigated by TG-DTA suggests that the complexes possess high thermal stability formation and their respective nickel oxide for 1 and nickel sulfide for 2 as final chemical entities, which are thermally stable. The nickel(II) chelates were found to be non-electrolytes, diamagnetic moments and the geometry around Ni(II) ion in complexes 1 and 2 is square planar.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.J. Heater, M.W. Carrano, D. Rains, R.B. Walter, D. Ji, Q. Yan, R.S. Czernuszewicz and C.J. Carrano, Inorg. Chem., 39, 3881 (2000); https://doi.org/10.1021/ic000389r
- J.T.H. Roos and D.R. Williams, J. Inorg. Nucl. Chem., 39, 1294 (1977); https://doi.org/10.1016/0022-1902(77)80373-4
- N.B. Behrens, G.M. Diaz and D.M.L. Goodgame, Inorg. Chim. Acta, 125, 21 (1986); https://doi.org/10.1016/S0020-1693(00)85478-X
- A. Cole, J. Goodfield, D.R. Williams and J.M. Midgley, Inorg. Chim. Acta, 92, 91 (1984); https://doi.org/10.1016/S0020-1693(00)80004-3
- R.S. Srivastava, Inorg. Chim. Acta, 55, 71 (1981); https://doi.org/10.1016/S0020-1693(00)90772-2
- H.A. Azab, A. Hassan, A.M. El-Nady and R.S.A. Azkal, Monatsh. Chem., 124, 267 (1993); https://doi.org/10.1007/BF00810582
- M. Taha and M.M. Khalil, J. Chem. Eng. Data, 50, 157 (2005); https://doi.org/10.1021/je049766v
- M.F. Charlot, O. Kahn, S. Jeannin and Y. Jeannin, Inorg. Chem., 19, 1410 (1980); https://doi.org/10.1021/ic50207a068
- H. Sigel, B.P. Operschall, S.S. Massoud, B. Song and R. Griesser, Dalton Trans., 5521 (2006); https://doi.org/10.1039/b610082a
- D. Czakis-Sulikowska, A. Czylkowska, J. Radwanska-Doczekalska, R. Grodzki and E. Wojciechowska, J. Therm. Anal. Calorim., 90, 557(2007); https://doi.org/10.1007/s10973-006-7980-9
- J.R. Bocarsly and J.K. Barton, Inorg. Chem., 31, 2827 (1992); https://doi.org/10.1021/ic00039a030
- O. Farver and I. Pecht, Coord. Chem. Rev., 94, 17 (1989); https://doi.org/10.1016/0010-8545(89)80043-8
- J. Crowe, H. Dobeli, R. Gentz, E. Hochuli, D. Stuber and K. Henco, Methods Mol. Biol., 31, 371 (1994); https://doi.org/10.1385/0-89603-258-2:371
- L. Nieba, S.E. Nieba-Axmann, A. Persson, M. Hämäläinen, F. Edebratt, A. Hansson, J. Lidholm, K. Magnusson, Å.F. Karlsson and A. Plückthun, Anal. Biochem., 252, 217 (1997); https://doi.org/10.1006/abio.1997.2326
- K.M. Maloney, D.R. Shnek, D.Y. Sasaki and F.H. Arnold, Chem. Biol., 3, 185 (1996); https://doi.org/10.1016/S1074-5521(96)90261-6
- Y. Morokuma, M. Yamazaki, T. Maeda, I. Yoshino, M. Ishizuka, T. Tanaka, Y. Ito and R. Tsuboi, Int. J. Dermatol., 47, 1298 (2008); https://doi.org/10.1111/j.1365-4632.2008.03783.x
- H. Rossotti, Chemical Applications of Potentiometry, Van Mostrand: London, U.K. (1968).
- G. Gran, Acta Chem. Scand., 4, 559 (1950); https://doi.org/10.3891/acta.chem.scand.04-0559
- P. Gans, A. Sabatini and A. Vacca, Talanta, 43, 1739 (1996); https://doi.org/10.1016/0039-9140(96)01958-3
- L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, Coord. Chem. Rev., 184, 311 (1999); https://doi.org/10.1016/S0010-8545(98)00260-4
- H.D. Demir, M. Pekin, A.K. C¨uc¨u, E. D¨olen and H.Y. Aboul-Enein, Toxicol. Environ. Chem., 71, 357 (1999); https://doi.org/10.1080/02772249909358806
- W. Sang-Aroon and V. Ruangpornvisuti, Int. J. Quantum Chem., 108, 1181 (2008); https://doi.org/10.1002/qua.21569
- S.A.A. Sajadi, Nat. Sci., 2, 85 (2010); https://doi.org/10.4236/ns.2010.22013
- W. Kadima and D.L. Rabenstein, J. Inorg. Biochem., 38, 277 (1990); https://doi.org/10.1016/0162-0134(90)80003-G
- H. Sigel, Metal Ions in Biological Systems, Marcel Dekker: New York vol. 2 (1973).
- I.J. Kang, L.W. Wang, T.A. Hsu, A. Yueh, C.-C. Lee, Y.-C. Lee, C.-Y. Lee, Y.-S. Chao, S.-R. Shih and J.-H. Chern, Bioorg. Med. Chem. Lett., 21, 1948 (2011); https://doi.org/10.1016/j.bmcl.2011.02.037
- P. Nath, M.K. Bharty, B. Maiti, A. Bharti, R.J. Butcher, J.L. Wikaira and N.K. Singh, RSC Adv., 6, 93867 (2016); https://doi.org/10.1039/C6RA15186H
- S. Chandra, S.D. Sharma and U. Kumar, Synth. React. Inorg. Met.-Org. Chem., 34, 79 (2004); https://doi.org/10.1081/SIM-120027318
- S. Chandra and L.K. Gupta, Transition Met. Chem., 27, 196 (2002); https://doi.org/10.1023/A:1013935602736
- S. Chandra and L.K. Gupta, J. Saudi Chem. Soc., 7, 243 (2003).
- M. Shakir, S.P. Varkey and P.S. Hameed, Polyhedron, 12, 2775 (1993); https://doi.org/10.1016/S0277-5387(00)80058-3
- K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley Interscience: New York (1970).
- A.B.P. Lever, Crystal Field Spectra. Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 1 (1968).
References
S.J. Heater, M.W. Carrano, D. Rains, R.B. Walter, D. Ji, Q. Yan, R.S. Czernuszewicz and C.J. Carrano, Inorg. Chem., 39, 3881 (2000); https://doi.org/10.1021/ic000389r
J.T.H. Roos and D.R. Williams, J. Inorg. Nucl. Chem., 39, 1294 (1977); https://doi.org/10.1016/0022-1902(77)80373-4
N.B. Behrens, G.M. Diaz and D.M.L. Goodgame, Inorg. Chim. Acta, 125, 21 (1986); https://doi.org/10.1016/S0020-1693(00)85478-X
A. Cole, J. Goodfield, D.R. Williams and J.M. Midgley, Inorg. Chim. Acta, 92, 91 (1984); https://doi.org/10.1016/S0020-1693(00)80004-3
R.S. Srivastava, Inorg. Chim. Acta, 55, 71 (1981); https://doi.org/10.1016/S0020-1693(00)90772-2
H.A. Azab, A. Hassan, A.M. El-Nady and R.S.A. Azkal, Monatsh. Chem., 124, 267 (1993); https://doi.org/10.1007/BF00810582
M. Taha and M.M. Khalil, J. Chem. Eng. Data, 50, 157 (2005); https://doi.org/10.1021/je049766v
M.F. Charlot, O. Kahn, S. Jeannin and Y. Jeannin, Inorg. Chem., 19, 1410 (1980); https://doi.org/10.1021/ic50207a068
H. Sigel, B.P. Operschall, S.S. Massoud, B. Song and R. Griesser, Dalton Trans., 5521 (2006); https://doi.org/10.1039/b610082a
D. Czakis-Sulikowska, A. Czylkowska, J. Radwanska-Doczekalska, R. Grodzki and E. Wojciechowska, J. Therm. Anal. Calorim., 90, 557(2007); https://doi.org/10.1007/s10973-006-7980-9
J.R. Bocarsly and J.K. Barton, Inorg. Chem., 31, 2827 (1992); https://doi.org/10.1021/ic00039a030
O. Farver and I. Pecht, Coord. Chem. Rev., 94, 17 (1989); https://doi.org/10.1016/0010-8545(89)80043-8
J. Crowe, H. Dobeli, R. Gentz, E. Hochuli, D. Stuber and K. Henco, Methods Mol. Biol., 31, 371 (1994); https://doi.org/10.1385/0-89603-258-2:371
L. Nieba, S.E. Nieba-Axmann, A. Persson, M. Hämäläinen, F. Edebratt, A. Hansson, J. Lidholm, K. Magnusson, Å.F. Karlsson and A. Plückthun, Anal. Biochem., 252, 217 (1997); https://doi.org/10.1006/abio.1997.2326
K.M. Maloney, D.R. Shnek, D.Y. Sasaki and F.H. Arnold, Chem. Biol., 3, 185 (1996); https://doi.org/10.1016/S1074-5521(96)90261-6
Y. Morokuma, M. Yamazaki, T. Maeda, I. Yoshino, M. Ishizuka, T. Tanaka, Y. Ito and R. Tsuboi, Int. J. Dermatol., 47, 1298 (2008); https://doi.org/10.1111/j.1365-4632.2008.03783.x
H. Rossotti, Chemical Applications of Potentiometry, Van Mostrand: London, U.K. (1968).
G. Gran, Acta Chem. Scand., 4, 559 (1950); https://doi.org/10.3891/acta.chem.scand.04-0559
P. Gans, A. Sabatini and A. Vacca, Talanta, 43, 1739 (1996); https://doi.org/10.1016/0039-9140(96)01958-3
L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca, Coord. Chem. Rev., 184, 311 (1999); https://doi.org/10.1016/S0010-8545(98)00260-4
H.D. Demir, M. Pekin, A.K. C¨uc¨u, E. D¨olen and H.Y. Aboul-Enein, Toxicol. Environ. Chem., 71, 357 (1999); https://doi.org/10.1080/02772249909358806
W. Sang-Aroon and V. Ruangpornvisuti, Int. J. Quantum Chem., 108, 1181 (2008); https://doi.org/10.1002/qua.21569
S.A.A. Sajadi, Nat. Sci., 2, 85 (2010); https://doi.org/10.4236/ns.2010.22013
W. Kadima and D.L. Rabenstein, J. Inorg. Biochem., 38, 277 (1990); https://doi.org/10.1016/0162-0134(90)80003-G
H. Sigel, Metal Ions in Biological Systems, Marcel Dekker: New York vol. 2 (1973).
I.J. Kang, L.W. Wang, T.A. Hsu, A. Yueh, C.-C. Lee, Y.-C. Lee, C.-Y. Lee, Y.-S. Chao, S.-R. Shih and J.-H. Chern, Bioorg. Med. Chem. Lett., 21, 1948 (2011); https://doi.org/10.1016/j.bmcl.2011.02.037
P. Nath, M.K. Bharty, B. Maiti, A. Bharti, R.J. Butcher, J.L. Wikaira and N.K. Singh, RSC Adv., 6, 93867 (2016); https://doi.org/10.1039/C6RA15186H
S. Chandra, S.D. Sharma and U. Kumar, Synth. React. Inorg. Met.-Org. Chem., 34, 79 (2004); https://doi.org/10.1081/SIM-120027318
S. Chandra and L.K. Gupta, Transition Met. Chem., 27, 196 (2002); https://doi.org/10.1023/A:1013935602736
S. Chandra and L.K. Gupta, J. Saudi Chem. Soc., 7, 243 (2003).
M. Shakir, S.P. Varkey and P.S. Hameed, Polyhedron, 12, 2775 (1993); https://doi.org/10.1016/S0277-5387(00)80058-3
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley Interscience: New York (1970).
A.B.P. Lever, Crystal Field Spectra. Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 1 (1968).