Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Certain Photoactive Liquid Crystalline Poly(ester amides) from 2,5-Pyridine Dicarboxylic Acid
Corresponding Author(s) : V. Chitra
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
A new series of four photo-crosslinkable thermotropic liquid crystalline poly(ester amides) were synthesized by direct polycondensation of 2,5-pyridine dicarboxylic acid with two different varying diols and diamines. Two diamines employed in the synthesis were 4,4′-diaminodiphenyl methane and 1,4-diaminobenzene. The arylidene diols 2,5-bis(4-hydroxy-3-methoxybenzylidene)cyclopentanone and 2,6-bis(4-hydroxy-3-methoxybenzylidene)cyclohexanone were also used. The synthesized poly(ester amides) were characterized by qualitative solubility test, FT-IR, 1H and 13C NMR spectra. The monomeric moieties were found to be well incorporated in the polymer back bone. The molecular weight of the polymer was assessed by gel permeation chromatography (GPC). The thermal phase transition behavior and liquid crystallinity of the poly(ester amides) were investigated by differential thermogravimetry (DTG) and hot stage optical polarized microscopy (HOPM), respectively. Interestingly, these poly(ester amides) in dimethylacetamide were found to possess photo-crosslinking characteristics when irradiated by UV light. These polymeric materials may find utility value in optical information storage devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U. Edlund and A.-C. Albertsson, Adv. Drug Deliv. Rev., 55, 585 (2003); https://doi.org/10.1016/S0169-409X(03)00036-X.
- P.A.M. Lips, R. Broos, M.J.M. van Heeringen, P.J. Dijkstra and J. Feijen, Polymer, 46, 7823 (2005); https://doi.org/10.1016/j.polymer.2005.07.013.
- A. Rodriguez-Galan, L. Franco and J. Puiggali, Polymers, 3, 65 (2010); https://doi.org/10.3390/polym3010065.
- M. Deng, J. Wu, C.A. Reinhart-King and C.-C. Chu, Biomacromolecules, 10, 3037 (2009); https://doi.org/10.1021/bm9006437.
- T.H. Barrows, Synthetic Absorbable Surgical Devices of Poly(esteramides), US Patent 4343931 (1982).
- J.D. Sudha, J. Polym. Sci. A Polym. Chem., 38, 2469 (2000); https://doi.org/10.1002/1099-0518(20000701)38:13<2469::AIDPOLA190>3.0.CO;2-J.
- A. Abdolmaleki, S. Mallakpour, R.N. Esmaeli and S. Borandeh, Polym. Plast. Technol. Eng., 55, 911 (2016); https://doi.org/10.1080/03602559.2015.1132431.
- L. Song, B. Du, L. Chen, M. Deng, H. Sun, X. Pang, P. Zhang and X. Chen, J. Polym. Sci. A Polym. Chem., 51, 4722 (2013); https://doi.org/10.1002/pola.26900.
- I.M. Pinilla, M.B. Martinez, F.Z. Mata and J.A. Galbis, J. Polym. Sci. A Polym. Chem., 36, 67 (1998); https://doi.org/10.1002/(SICI)1099-0518(19980115)36:1<67::AIDPOLA10>3.0.CO;2-B.
- M.X. Li, R.X. Zhuo and F.Q. Qu, J. Polym. Sci. A Polym. Chem., 40, 4550 (2002); https://doi.org/10.1002/pola.10547.
- P. Garg, H. Keul, D. Klee and M. Moller, Macromol. Chem. Phys., 210, 1754 (2009); https://doi.org/10.1002/macp.200900232.
- Gangadhara and K. Kishore, Polymer, 36, 1903 (1995); https://doi.org/10.1016/0032-3861(95)90938-X.
- V. Shibaev, Mol. Cryst. Liq. Cryst., 243, 201 (1994); https://doi.org/10.1080/10587259408037770.
- M. Murali and A.B. Samui, J. Mater. Chem., 20, 2714 (2010); https://doi.org/10.1039/b915137k.
- S.S. Ankushrao, V.N. Kadam, Y.S. Patil, V.P. Ubale, N.N. Maldar and A.A. Ghanwat, J. Macromol. Sci. Pure Appl. Chem., 54, 124 (2017); https://doi.org/10.1080/10601325.2016.1261625.
- S.L. Oswal and A.K. Pandya, Iran. Polym. J., 13, 205 (2004).
- M. Mayavathi, V. Chitra, P. Sathish and D. Roopsingh, Int. J. Chemtech Res., 7, 2956 (2015).
References
U. Edlund and A.-C. Albertsson, Adv. Drug Deliv. Rev., 55, 585 (2003); https://doi.org/10.1016/S0169-409X(03)00036-X.
P.A.M. Lips, R. Broos, M.J.M. van Heeringen, P.J. Dijkstra and J. Feijen, Polymer, 46, 7823 (2005); https://doi.org/10.1016/j.polymer.2005.07.013.
A. Rodriguez-Galan, L. Franco and J. Puiggali, Polymers, 3, 65 (2010); https://doi.org/10.3390/polym3010065.
M. Deng, J. Wu, C.A. Reinhart-King and C.-C. Chu, Biomacromolecules, 10, 3037 (2009); https://doi.org/10.1021/bm9006437.
T.H. Barrows, Synthetic Absorbable Surgical Devices of Poly(esteramides), US Patent 4343931 (1982).
J.D. Sudha, J. Polym. Sci. A Polym. Chem., 38, 2469 (2000); https://doi.org/10.1002/1099-0518(20000701)38:13<2469::AIDPOLA190>3.0.CO;2-J.
A. Abdolmaleki, S. Mallakpour, R.N. Esmaeli and S. Borandeh, Polym. Plast. Technol. Eng., 55, 911 (2016); https://doi.org/10.1080/03602559.2015.1132431.
L. Song, B. Du, L. Chen, M. Deng, H. Sun, X. Pang, P. Zhang and X. Chen, J. Polym. Sci. A Polym. Chem., 51, 4722 (2013); https://doi.org/10.1002/pola.26900.
I.M. Pinilla, M.B. Martinez, F.Z. Mata and J.A. Galbis, J. Polym. Sci. A Polym. Chem., 36, 67 (1998); https://doi.org/10.1002/(SICI)1099-0518(19980115)36:1<67::AIDPOLA10>3.0.CO;2-B.
M.X. Li, R.X. Zhuo and F.Q. Qu, J. Polym. Sci. A Polym. Chem., 40, 4550 (2002); https://doi.org/10.1002/pola.10547.
P. Garg, H. Keul, D. Klee and M. Moller, Macromol. Chem. Phys., 210, 1754 (2009); https://doi.org/10.1002/macp.200900232.
Gangadhara and K. Kishore, Polymer, 36, 1903 (1995); https://doi.org/10.1016/0032-3861(95)90938-X.
V. Shibaev, Mol. Cryst. Liq. Cryst., 243, 201 (1994); https://doi.org/10.1080/10587259408037770.
M. Murali and A.B. Samui, J. Mater. Chem., 20, 2714 (2010); https://doi.org/10.1039/b915137k.
S.S. Ankushrao, V.N. Kadam, Y.S. Patil, V.P. Ubale, N.N. Maldar and A.A. Ghanwat, J. Macromol. Sci. Pure Appl. Chem., 54, 124 (2017); https://doi.org/10.1080/10601325.2016.1261625.
S.L. Oswal and A.K. Pandya, Iran. Polym. J., 13, 205 (2004).
M. Mayavathi, V. Chitra, P. Sathish and D. Roopsingh, Int. J. Chemtech Res., 7, 2956 (2015).