Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorptive Removal of Amido Black 10B from Aqueous Solution using Stem Carbon of Ricinus communis as Adsorbent
Corresponding Author(s) : Rajvir Kaur
Asian Journal of Chemistry,
Vol. 31 No. 5 (2019): Vol 31 Issue 5
Abstract
In the present work the efficiency of activated carbon made from stems of Ricinus communis (CRC) has been studied for removal of anionic dye- Amido black 10B from aqueous solution. The adsorbent has been characterized with scanning electron microscopy (SEM) and Fourier transformer infrared (FT-IR). The effects of various experimental parameters such as contact time, adsorbent dose, initial dye concentrations, pH, concentration of salt and temperature have been studied. Langmuir, Freundlich and Tempkin isotherm models have been used for describing the adsorption process. Of these, Langmuir isotherm model has best fitted the experimental data with a maximum adsorption capacity of 7.12 mg/g. Kinetics studies indicate that the adsorption of Amido black 10B has favoured toward pseudo-second-order model with high correlation coefficients. Thermodynamics parameters confirmed that the adsorption has been found to be spontaneous and endothermic in nature. These results suggested that CRC has a potential low-cost adsorbent for the removal of toxic dye Amido black 10B.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Kaur and H. Kaur, Port. Electrochem. Acta, 34, 185 (2016); https://doi.org/10.4152/pea.201603185.
- R. Katwal, R. Kaur and H. Kaur, Asian J. Chem., 29, 1095 (2017); https://doi.org/10.14233/ajchem.2017.20428.
- A. Mittal, V. Thakur and V. Gajbe, Environ. Sci. Pollut. Res. Int., 20, 260 (2013); https://doi.org/10.1007/s11356-012-0843-y.
- U. Pagga and D. Brown, Chemosphere, 15, 479 (1986); https://doi.org/10.1016/0045-6535(86)90542-4.
- J.H. Sun, S.P. Sun, G.L. Wang and L.P. Qiao, Dyes Pigments, 74, 647 (2007); https://doi.org/10.1016/j.dyepig.2006.04.006.
- H. Kaur and R. Kaur, J. Mater. Environ. Sci., 5, 1830 (2014).
- H. Kaur, Swati and R. Kaur, Chem. Sci. Transc., 3, 1300 (2014); https://doi.org/10.7598/cst2014.922.
- R. Kaur and H. Kaur, Desalination Water Treat., 78, 253 (2017); https://doi.org/10.5004/dwt.2017.20548.
- W.M. Abdul, N.H. Hajrah, J.S.M. Sabir, S.M. Al-Garni, M.J. Sabir, S.A. Kabli, K.S. Saini and R.S. Bora, Asian Pac. J. Trop. Med., 11, 177 (2018); https://doi.org/10.4103/1995-7645.228431.
- D.L. Pavia, G.M. Lampman, G.S. Kriz and J.A. Vyvyan, Introduction to Spectroscopy, Brookescole Publishers: California, edn 4 (2008).
- R. Kaur and H. Kaur, Model. Earth Syst. Environ., 3, 9 (2017); https://doi.org/10.1007/s40808-017-0274-3.
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
- G. Annadurai, R.S. Juang and D.J. Lee, J. Hazard. Mater., 92, 263 (2002); https://doi.org/10.1016/S0304-3894(02)00017-1.
- M. Qiu, C. Qian, J. Xu, J. Wu and G. Wang, Desalination, 243, 286 (2009); https://doi.org/10.1016/j.desal.2008.04.029.
- H.M.F. Freundlich, J. Phys. Chem., 57U, 385 (1906); https://doi.org/10.1515/zpch-1907-5723.
- M.K. Dahri, M.R.R. Kooh and L.B.L. Lim, Alexandria Eng. J., 54, 1253 (2015); https://doi.org/10.1016/j.aej.2015.07.005.
- Y.S. Ho and G. Mckay, Water Res., 34, 735 (2000); https://doi.org/10.1016/S0043-1354(99)00232-8.
- W.J. Weber and J.C. Morris, J. Sanit. Eng. Div. ASC, 89, 31 (1963).
References
R. Kaur and H. Kaur, Port. Electrochem. Acta, 34, 185 (2016); https://doi.org/10.4152/pea.201603185.
R. Katwal, R. Kaur and H. Kaur, Asian J. Chem., 29, 1095 (2017); https://doi.org/10.14233/ajchem.2017.20428.
A. Mittal, V. Thakur and V. Gajbe, Environ. Sci. Pollut. Res. Int., 20, 260 (2013); https://doi.org/10.1007/s11356-012-0843-y.
U. Pagga and D. Brown, Chemosphere, 15, 479 (1986); https://doi.org/10.1016/0045-6535(86)90542-4.
J.H. Sun, S.P. Sun, G.L. Wang and L.P. Qiao, Dyes Pigments, 74, 647 (2007); https://doi.org/10.1016/j.dyepig.2006.04.006.
H. Kaur and R. Kaur, J. Mater. Environ. Sci., 5, 1830 (2014).
H. Kaur, Swati and R. Kaur, Chem. Sci. Transc., 3, 1300 (2014); https://doi.org/10.7598/cst2014.922.
R. Kaur and H. Kaur, Desalination Water Treat., 78, 253 (2017); https://doi.org/10.5004/dwt.2017.20548.
W.M. Abdul, N.H. Hajrah, J.S.M. Sabir, S.M. Al-Garni, M.J. Sabir, S.A. Kabli, K.S. Saini and R.S. Bora, Asian Pac. J. Trop. Med., 11, 177 (2018); https://doi.org/10.4103/1995-7645.228431.
D.L. Pavia, G.M. Lampman, G.S. Kriz and J.A. Vyvyan, Introduction to Spectroscopy, Brookescole Publishers: California, edn 4 (2008).
R. Kaur and H. Kaur, Model. Earth Syst. Environ., 3, 9 (2017); https://doi.org/10.1007/s40808-017-0274-3.
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
G. Annadurai, R.S. Juang and D.J. Lee, J. Hazard. Mater., 92, 263 (2002); https://doi.org/10.1016/S0304-3894(02)00017-1.
M. Qiu, C. Qian, J. Xu, J. Wu and G. Wang, Desalination, 243, 286 (2009); https://doi.org/10.1016/j.desal.2008.04.029.
H.M.F. Freundlich, J. Phys. Chem., 57U, 385 (1906); https://doi.org/10.1515/zpch-1907-5723.
M.K. Dahri, M.R.R. Kooh and L.B.L. Lim, Alexandria Eng. J., 54, 1253 (2015); https://doi.org/10.1016/j.aej.2015.07.005.
Y.S. Ho and G. Mckay, Water Res., 34, 735 (2000); https://doi.org/10.1016/S0043-1354(99)00232-8.
W.J. Weber and J.C. Morris, J. Sanit. Eng. Div. ASC, 89, 31 (1963).