Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorptive Removal of Pb(II), Cu(II) and Cd(II) Ions onto Rubus ellipticus as Low-Cost Biosorbent
Corresponding Author(s) : Rajesh Kumar
Asian Journal of Chemistry,
Vol. 32 No. 3 (2020): Vol 32 Issue 3
Abstract
In the present study, removal efficiency (%) of Rubus ellipticus leaves (REL) as an adsorbent for the removal of Pb(II), Cu(II) and Cd(II) ions was investigated. Different parameters i.e., pH, contact time, temperature, adsorbent dose and initial metal ion concentration were investigated to obtain the optimum adsorption efficiency. At pH 4, a maximum adsorption was 84.6, 80.2 and 74.5 % for Pb(II), Cu(II) and Cd(II) ions, respectively. The maximum adsorption of all the three metal ions obtained at contact time (75 min), initial metal ion concentration (10 mg/L), temperature (25 ºC) and adsorbent dose (5.0 g). The equilibrium adsorption of Pb(II), Cu(II) and Cd(II) ions at different temperature was described by Langmuir, Freundlich and Temkin isotherms. The equilibrium data fitted well the Langmuir adsorption isotherm. Thermodynamic parameters like Gibb′s free energy (ΔGº), enthalpy (ΔHº) and entropy (ΔSº) were also calculated. The calculated parameters indicated that adsorption of Pb(II), Cu(II) and Cd(II) ions onto Rubus ellipticus leaves (REL) was spontaneous (ΔGº < 0), endothermic (ΔGº > 0). The feasibility of the process was evident from the positive value of ΔSº.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Wang, Y. Pan, P. Cai, T. Guo and H. Xiao, Bioresour. Technol., 241, 482 (2017); https://doi.org/10.1016/j.biortech.2017.05.162
- Y.S. Ho, J.C.Y. Ng and G. McKay, Sep. Sci. Technol., 36, 241 (2001); https://doi.org/10.1081/SS-100001077
- P. Tiwari, M.C. Vishwakarma and S.K. Joshi, J. Indian Chem. Soc., 94, 59 (2017).
- O.D. Uluozlu, A. Sari, M. Tuzen and M. Soylak, Bioresour. Technol., 99, 2972 (2008); https://doi.org/10.1016/j.biortech.2007.06.052
- M.M. Matlock, B.S. Howerton and D.A. Atwood, Water Res., 36, 4757 (2002); https://doi.org/10.1016/S0043-1354(02)00149-5
- C. Blöcher, J. Dorda, V. Mavrov, H. Chmiel, N.K. Lazaridis and K.A. Matis, Water Res., 37, 4018 (2003); https://doi.org/10.1016/S0043-1354(03)00314-2
- S. Rengaraj, C.K. Joo, Y. Kim and J. Yi, J. Hazard. Mater., 102, 257 (2003); https://doi.org/10.1016/S0304-3894(03)00209-7
- M.C. Vishwkarma, P. Tiwari, S.K. Joshi, H. Sharma and N.S. Bhandari, Chem. Sci. Trans., 7, 445 (2018); https://doi.org/10.7598/cst2018.1490
- M. Kobya, E. Demirbas, E. Senturk and M. Ince, Bioresour. Technol., 96, 1518 (2005); https://doi.org/10.1016/j.biortech.2004.12.005
- I. Michalak, K. Chojnacka and A. Witek-Krowiak, Appl. Biochem. Biotechnol., 170, 1389 (2013); https://doi.org/10.1007/s12010-013-0269-0
- V.K. Gupta, A.K. Shrivastava and N. Jain, Water Res., 35, 4079 (2001); https://doi.org/10.1016/S0043-1354(01)00138-5
- Y. Sag and T. Kutsal, Process Biochem., 35, 801 (2000); https://doi.org/10.1016/S0032-9592(99)00154-5
- Z.-Y. Yao, J.-H. Qi and L.-H. Wang, J. Hazard. Mater., 174, 137 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.027
- M.N. Nourbakhsh, S. Kilicarslan, S. Lihan and H. Ozdag, Chem. Eng. J., 85, 351 (2002); https://doi.org/10.1016/S1385-8947(01)00227-3
- A. Ozer and D. Ozer, J. Hazard. Mater., 100, 219 (2003); https://doi.org/10.1016/S0304-3894(03)00109-2
- P. Vasudevan, V. Padmavathy and S.C. Dhingra, Bioresour. Technol., 82, 285 (2002); https://doi.org/10.1016/S0960-8524(01)00181-X
- V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad and I.M. Mishra, Colloid. Surf. A: Physicochem. Eng. Asp., 272, 89 (2006); https://doi.org/10.1016/j.colsurfa.2005.07.016
- P. Tiwari and M.C. Vishwakarma, Modern Chemistry., 5, 11 (2017); https://doi.org/10.11648/j.mc.20170501.13
- S.R. Popuri, Y. Vijaya, V.M. Boddu and K. Abburi, Bioresour. Technol., 100, 194 (2009); https://doi.org/10.1016/j.biortech.2008.05.041
- P. Lodeiro, T.L. Barriada, R. Herrero and M.E. Sastre de Vicente, Environ. Pollut., 142, 264 (2006); https://doi.org/10.1016/j.envpol.2005.10.001
- H. Lata, V.K. Garg and R.K. Gupta, J. Hazard. Mater., 157, 503 (2008); https://doi.org/10.1016/j.jhazmat.2008.01.011
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
- I. Langmuir, J. Am. Chem. Soc., 39, 1848 (1917); https://doi.org/10.1021/ja02254a006
- A.M. Awwad and N.M. Salem, J. Saudi Chem. Soc., 18, 486 (2014); https://doi.org/10.1016/j.jscs.2011.10.007
- H.M.F. Freindlich, J. Phys., 57, 385 (1906).
- M.J. Temkin and V. Pyzher, Acta Physchim. USSR, 12, 217 (1940).
- E. Pehlivan, B.H. Yanik, G. Ahmetli and M. Pehlivan, Bioresour. Technol., 99, 3520 (2008); https://doi.org/10.1016/j.biortech.2007.07.052
- M.J. Zamzow, B.R. Eichbaum, K.R. Sandgren and D.E. Shanks, Sep. Sci. Technol., 25, 1555 (1990); https://doi.org/10.1080/01496399008050409
- S.K. Srivastava, R. Tyagi, N. Pant and N. Pal, Environ. Sci. Technol. Lett., 10, 275 (1989); https://doi.org/10.1080/09593338909384742
- V.K. Gupta and I. Ali, Sep. Purif. Technol., 18, 131 (2000); https://doi.org/10.1016/S1383-5866(99)00058-1
- S. Karabulut, A. Karabakan, A. Denizli and Y. Yürüm, Sep. Purif. Technol., 18, 177 (2000); https://doi.org/10.1016/S1383-5866(99)00067-2
- B. Yu, Y. Zhang, A. Shukla, S.S. Shukla and K.L. Dorris, J. Hazard. Mater., 80, 33 (2000); https://doi.org/10.1016/S0304-3894(00)00278-8
- Y. Ho and A.E. Ofomaja, Biochem. Eng. J., 30, 117 (2006); https://doi.org/10.1016/j.bej.2006.02.012
- Z. Aksu and G. Donmez, Process Biochem., 41, 860 (2006); https://doi.org/10.1016/j.procbio.2005.10.025
- X.S. Wang and Y. Qin, J. Hazard. Mater., 138, 582 (2006); https://doi.org/10.1016/j.jhazmat.2006.05.091
- Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi and A. Montiel, J. Hazard. Mater., 156, 412 (2008); https://doi.org/10.1016/j.jhazmat.2007.12.036
References
F. Wang, Y. Pan, P. Cai, T. Guo and H. Xiao, Bioresour. Technol., 241, 482 (2017); https://doi.org/10.1016/j.biortech.2017.05.162
Y.S. Ho, J.C.Y. Ng and G. McKay, Sep. Sci. Technol., 36, 241 (2001); https://doi.org/10.1081/SS-100001077
P. Tiwari, M.C. Vishwakarma and S.K. Joshi, J. Indian Chem. Soc., 94, 59 (2017).
O.D. Uluozlu, A. Sari, M. Tuzen and M. Soylak, Bioresour. Technol., 99, 2972 (2008); https://doi.org/10.1016/j.biortech.2007.06.052
M.M. Matlock, B.S. Howerton and D.A. Atwood, Water Res., 36, 4757 (2002); https://doi.org/10.1016/S0043-1354(02)00149-5
C. Blöcher, J. Dorda, V. Mavrov, H. Chmiel, N.K. Lazaridis and K.A. Matis, Water Res., 37, 4018 (2003); https://doi.org/10.1016/S0043-1354(03)00314-2
S. Rengaraj, C.K. Joo, Y. Kim and J. Yi, J. Hazard. Mater., 102, 257 (2003); https://doi.org/10.1016/S0304-3894(03)00209-7
M.C. Vishwkarma, P. Tiwari, S.K. Joshi, H. Sharma and N.S. Bhandari, Chem. Sci. Trans., 7, 445 (2018); https://doi.org/10.7598/cst2018.1490
M. Kobya, E. Demirbas, E. Senturk and M. Ince, Bioresour. Technol., 96, 1518 (2005); https://doi.org/10.1016/j.biortech.2004.12.005
I. Michalak, K. Chojnacka and A. Witek-Krowiak, Appl. Biochem. Biotechnol., 170, 1389 (2013); https://doi.org/10.1007/s12010-013-0269-0
V.K. Gupta, A.K. Shrivastava and N. Jain, Water Res., 35, 4079 (2001); https://doi.org/10.1016/S0043-1354(01)00138-5
Y. Sag and T. Kutsal, Process Biochem., 35, 801 (2000); https://doi.org/10.1016/S0032-9592(99)00154-5
Z.-Y. Yao, J.-H. Qi and L.-H. Wang, J. Hazard. Mater., 174, 137 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.027
M.N. Nourbakhsh, S. Kilicarslan, S. Lihan and H. Ozdag, Chem. Eng. J., 85, 351 (2002); https://doi.org/10.1016/S1385-8947(01)00227-3
A. Ozer and D. Ozer, J. Hazard. Mater., 100, 219 (2003); https://doi.org/10.1016/S0304-3894(03)00109-2
P. Vasudevan, V. Padmavathy and S.C. Dhingra, Bioresour. Technol., 82, 285 (2002); https://doi.org/10.1016/S0960-8524(01)00181-X
V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad and I.M. Mishra, Colloid. Surf. A: Physicochem. Eng. Asp., 272, 89 (2006); https://doi.org/10.1016/j.colsurfa.2005.07.016
P. Tiwari and M.C. Vishwakarma, Modern Chemistry., 5, 11 (2017); https://doi.org/10.11648/j.mc.20170501.13
S.R. Popuri, Y. Vijaya, V.M. Boddu and K. Abburi, Bioresour. Technol., 100, 194 (2009); https://doi.org/10.1016/j.biortech.2008.05.041
P. Lodeiro, T.L. Barriada, R. Herrero and M.E. Sastre de Vicente, Environ. Pollut., 142, 264 (2006); https://doi.org/10.1016/j.envpol.2005.10.001
H. Lata, V.K. Garg and R.K. Gupta, J. Hazard. Mater., 157, 503 (2008); https://doi.org/10.1016/j.jhazmat.2008.01.011
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
I. Langmuir, J. Am. Chem. Soc., 39, 1848 (1917); https://doi.org/10.1021/ja02254a006
A.M. Awwad and N.M. Salem, J. Saudi Chem. Soc., 18, 486 (2014); https://doi.org/10.1016/j.jscs.2011.10.007
H.M.F. Freindlich, J. Phys., 57, 385 (1906).
M.J. Temkin and V. Pyzher, Acta Physchim. USSR, 12, 217 (1940).
E. Pehlivan, B.H. Yanik, G. Ahmetli and M. Pehlivan, Bioresour. Technol., 99, 3520 (2008); https://doi.org/10.1016/j.biortech.2007.07.052
M.J. Zamzow, B.R. Eichbaum, K.R. Sandgren and D.E. Shanks, Sep. Sci. Technol., 25, 1555 (1990); https://doi.org/10.1080/01496399008050409
S.K. Srivastava, R. Tyagi, N. Pant and N. Pal, Environ. Sci. Technol. Lett., 10, 275 (1989); https://doi.org/10.1080/09593338909384742
V.K. Gupta and I. Ali, Sep. Purif. Technol., 18, 131 (2000); https://doi.org/10.1016/S1383-5866(99)00058-1
S. Karabulut, A. Karabakan, A. Denizli and Y. Yürüm, Sep. Purif. Technol., 18, 177 (2000); https://doi.org/10.1016/S1383-5866(99)00067-2
B. Yu, Y. Zhang, A. Shukla, S.S. Shukla and K.L. Dorris, J. Hazard. Mater., 80, 33 (2000); https://doi.org/10.1016/S0304-3894(00)00278-8
Y. Ho and A.E. Ofomaja, Biochem. Eng. J., 30, 117 (2006); https://doi.org/10.1016/j.bej.2006.02.012
Z. Aksu and G. Donmez, Process Biochem., 41, 860 (2006); https://doi.org/10.1016/j.procbio.2005.10.025
X.S. Wang and Y. Qin, J. Hazard. Mater., 138, 582 (2006); https://doi.org/10.1016/j.jhazmat.2006.05.091
Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi and A. Montiel, J. Hazard. Mater., 156, 412 (2008); https://doi.org/10.1016/j.jhazmat.2007.12.036