Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effective Adsorbents Based on Biomaterials for Removal of Methylene Blue Dye from Water
Corresponding Author(s) : K. Ravindhranath
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
Biomaterials prepared from barks of Ficus benghalensis, Tamarindus indica and Acasia nilotica indica are investigated as adsorbents for the removal of methylene blue dye from waste waters using batch methods of extraction. Various physico-chemical parameters are optimized for the maximum removal of the dye. The extractions are found to be pH sensitive. Substantial adsorption is noted at high pHs. With simulated waters, 100 % removal of the dye is observed at pH 8/10 and at other optimum conditions of extraction with all the adsorbents developed. The optimum time needed for the maximum extraction of the dye is found to be in the order: Ficus benghalensis (120 min) > Tamarindus indica (90 min) > Acasia nilotica indica (30 min). The adsorption capacities of Ficus benghalensis sorbent, Tamarindus indica sorbent and Acasia nilotica indica sorbent are 50.0 mg/g, 66.7 mg/g and 100 mg/g respectively. In case of the Acasia nilotica indica sorbent, even at low pHs, substantial removal of the dye is effected. Co-anions (five fold excess) are least interfered while cations like, Ca2+, Mg2+ and Cu2+ have interfered to some extent but in no case, % removal has not come down below 90 %. It is interesting to note that Fe2+ and Zn2+ have maintained the maximum extraction synergistically. The developed procedures were successfully applied to real water samples too.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.S. Ho and G. McKay, Can. J. Chem. Eng., 76, 822 (1998); https://doi.org/10.1002/cjce.5450760419.
- G.M. Walker, L. Hansen, J.A. Hanna and S.J. Allen, Water Res., 37, 2081 (2003); https://doi.org/10.1016/S0043-1354(02)00540-7.
- M. Stylidi, J. Appl. Catal. Environ., 47, 189 (2004); https://doi.org/10.1016/j.apcatb.2003.09.014.
- M. Abbas and M. Trari, Process Saf. Environ. Prot., 98, 424 (2015); https://doi.org/10.1016/j.psep.2015.09.015.
- R.J. Bleicher, D.D. Kloth, D. Robinson and P. Axelrod, J. Surg. Oncol., 99, 356 (2009); https://doi.org/10.1002/jso.21240.
- G. Elango and S.M. Roopan, J. Photochem. Photobiol. B, 155, 34 (2016); https://doi.org/10.1016/j.jphotobiol.2015.12.010.
- K. Dutta, S. Mukhopadhyay, S. Bhattacharjee and B. Chaudhuri, J. Hazard. Mater., 84, 57 (2001); https://doi.org/10.1016/S0304-3894(01)00202-3.
- N. Zaghbani, A. Hafiane and M. Dhahbi, Separ. Purif. Technol., 55, 117 (2007); https://doi.org/10.1016/j.seppur.2006.11.008.
- D. Pathania, S. Sharma and P. Singh, Arab. J. Chem., 10, S1445 (2017); https://doi.org/10.1016/j.arabjc.2013.04.021.
- Y. Liu, C. Yan, Z. Zhang, Y. Gong, H. Wang and X. Qiu, Mater. Lett., 185, 370 (2016); https://doi.org/10.1016/j.matlet.2016.09.044.
- R.M. Novais, G. Ascensao, D.M. Tobaldi, M.P. Seabra and J.A. Labrincha, J. Clean. Prod., 171, 783 (2018); https://doi.org/10.1016/j.jclepro.2017.10.078.
- H. Nourmoradi, A.R. Ghiasvand and Z. Noorimotlagh, Water Treat., 55, 252 (2015); https://doi.org/10.1080/19443994.2014.914449.
- L. Ai, M. Li and L. Li, J. Chem. Eng. Data, 56, 3475 (2011); https://doi.org/10.1021/je200536h.
- J. Xie, C. Li, L. Chi and D. Wu, Fuel, 103, 480 (2013); https://doi.org/10.1016/j.fuel.2012.05.036.
- Ö. Gerçel, A. Özcan, A.S. Özcan and H.F. Gerçel, Appl. Surf. Sci., 253, 4843 (2007); https://doi.org/10.1016/j.apsusc.2006.10.053.
- M.T. Uddin, M.A. Islam, S. Mahmud and M. Rukanuzzaman, J. Hazard. Mater., 164, 53 (2009); https://doi.org/10.1016/j.jhazmat.2008.07.131.
- F. Marrakchi, M.J. Ahmed, W.A. Khanday, M. Asif and B.H. Hameed, Int. J. Biol. Macromol., 98, 233 (2017); https://doi.org/10.1016/j.ijbiomac.2017.01.119.
- A.A. Attia, B.S. Girgis and S.A. Khedr, J. Chem. Technol. Biotechnol., 78, 611 (2003); https://doi.org/10.1002/jctb.743.
- S.A. Odoemelam, U.N. Emeh and N.O. Eddy, J. Taibah Univ. Sci., 12, 255 (2018); https://doi.org/10.1080/16583655.2018.1465725.
- B.S. Reddy and K. Ravindhranath, Int. J. Chemtech Res., 6, 5612 (2014).
- M. Khodaie, N. Ghasemi, B. Moradi and M. Rahimi, J. Chem., 2013, Article ID 383985 (2013); https://doi.org/10.1155/2013/383985.
- Y. Hanumantharao, M. Kishore and K. Ravindhranth, Elect. J. Environ., Agricul. Food Chem., 11, 442 (2012).
- Y. Hanumantharao, M. Kishore and K. Ravindhranath, Int. J. Chemtech Res., 4, 1686 (2012).
- S. Ravulapalli and R. Kunta, J. Fluor. Chem., 193, 58 (2017); https://doi.org/10.1016/j.jfluchem.2016.11.013.
- M. Suneetha, B.S. Sundar and K. Ravindhranath, Int. J. ChemTech Res., 15, 93 (2014).
- M. Suneetha, B.S. Sundar and K. Ravindhranath, Int. J. Environ.Technol. Manag., 18, 420 (2015); https://doi.org/10.1504/IJETM.2015.073079.
- M. Suneetha, B.S. Sundar and K. Ravindhranath, Asian J. Water Environ. Pollut., 12, 33 (2015); https://doi.org/10.3233/AJW-150005.
- S. Ravulapalli and R. Kunta, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413.
- G. Gebrehawaria, A. Hussen and V.M. Rao, Int. J. Environ. Sci. Technol. 12, 1569 (2015); https://doi.org/10.1007/s13762-014-0530-2.
- S. Sasikala and G. Muthuraman, Ind. Chem., 1, 105 (2015); https://doi.org/10.4172/2469-9764.1000105.
- A.A. Moosa, A.M. Ridha and N.A. Hussien, Am. J. Mater. Sci., 6, 105 (2016); https://doi.org/10.5923/j.materials.20160604.04.
- H. Liu, Y. Dong, Y. Liu and H. Wang, J. Hazard. Mater., 178, 1132 (2010); https://doi.org/10.1016/j.jhazmat.2010.01.117.
- J.Huang, N.R. Kankanamge, C. Chow, D.T. Welsh, T. Li and P.R. Teasdale, J. Environ. Sci., 63, 174 (2018); https://doi.org/10.1016/j.jes.2017.09.009.
- A.F.A. Bakar, I. Yusoff, N.T. Fatt, F. Othman and M.A. Ashraf, BioMed Res. Int., 2013, Article ID 890803 (2013); http://dx.doi.org/10.1155/2013/890803.
- R. Shen and J.F. Ma, J. Exp. Botany, 52, 1683 (2001).
- M. Suneetha and K. Ravindhranath, Indian J. Chem. Technol., 25, 345 (2018).
- M. Suneetha and K. Ravindhranath, J. Chem. Pharm. Res., 6, 408 (2014).
- Y. Hanumantha Rao and K. Ravindhranath, Int. J. Chemtech Res., 8, 784 (2015).
- N. Berraksu, E.M. Ayan and J. Yanik, J. Chem., 2013, Article ID 427586, (2013); https://doi.org/10.1155/2013/427586.
- F.B.A. Rahman and M. Akter, Int. J. Waste Resour., 6, 244 (2016); https://doi.org/10.4172/2252-5211.1000244.
- Y.A. Argun, A. Karacali, U. Calisir, N. Kilinc and H. Irak, Int. J. Adv. Res., 5, 707 (2017); https://doi.org/10.21474/IJAR01/5110.
- G. Kiely, Environmental Engineering, McGraw-hall International Editions. 1998.
- Metcalf and Eddy. Wastewater Engineering: Treatment of Reuse. 4th. Ed, New York: McGraw Hill Co. 2003
References
Y.S. Ho and G. McKay, Can. J. Chem. Eng., 76, 822 (1998); https://doi.org/10.1002/cjce.5450760419.
G.M. Walker, L. Hansen, J.A. Hanna and S.J. Allen, Water Res., 37, 2081 (2003); https://doi.org/10.1016/S0043-1354(02)00540-7.
M. Stylidi, J. Appl. Catal. Environ., 47, 189 (2004); https://doi.org/10.1016/j.apcatb.2003.09.014.
M. Abbas and M. Trari, Process Saf. Environ. Prot., 98, 424 (2015); https://doi.org/10.1016/j.psep.2015.09.015.
R.J. Bleicher, D.D. Kloth, D. Robinson and P. Axelrod, J. Surg. Oncol., 99, 356 (2009); https://doi.org/10.1002/jso.21240.
G. Elango and S.M. Roopan, J. Photochem. Photobiol. B, 155, 34 (2016); https://doi.org/10.1016/j.jphotobiol.2015.12.010.
K. Dutta, S. Mukhopadhyay, S. Bhattacharjee and B. Chaudhuri, J. Hazard. Mater., 84, 57 (2001); https://doi.org/10.1016/S0304-3894(01)00202-3.
N. Zaghbani, A. Hafiane and M. Dhahbi, Separ. Purif. Technol., 55, 117 (2007); https://doi.org/10.1016/j.seppur.2006.11.008.
D. Pathania, S. Sharma and P. Singh, Arab. J. Chem., 10, S1445 (2017); https://doi.org/10.1016/j.arabjc.2013.04.021.
Y. Liu, C. Yan, Z. Zhang, Y. Gong, H. Wang and X. Qiu, Mater. Lett., 185, 370 (2016); https://doi.org/10.1016/j.matlet.2016.09.044.
R.M. Novais, G. Ascensao, D.M. Tobaldi, M.P. Seabra and J.A. Labrincha, J. Clean. Prod., 171, 783 (2018); https://doi.org/10.1016/j.jclepro.2017.10.078.
H. Nourmoradi, A.R. Ghiasvand and Z. Noorimotlagh, Water Treat., 55, 252 (2015); https://doi.org/10.1080/19443994.2014.914449.
L. Ai, M. Li and L. Li, J. Chem. Eng. Data, 56, 3475 (2011); https://doi.org/10.1021/je200536h.
J. Xie, C. Li, L. Chi and D. Wu, Fuel, 103, 480 (2013); https://doi.org/10.1016/j.fuel.2012.05.036.
Ö. Gerçel, A. Özcan, A.S. Özcan and H.F. Gerçel, Appl. Surf. Sci., 253, 4843 (2007); https://doi.org/10.1016/j.apsusc.2006.10.053.
M.T. Uddin, M.A. Islam, S. Mahmud and M. Rukanuzzaman, J. Hazard. Mater., 164, 53 (2009); https://doi.org/10.1016/j.jhazmat.2008.07.131.
F. Marrakchi, M.J. Ahmed, W.A. Khanday, M. Asif and B.H. Hameed, Int. J. Biol. Macromol., 98, 233 (2017); https://doi.org/10.1016/j.ijbiomac.2017.01.119.
A.A. Attia, B.S. Girgis and S.A. Khedr, J. Chem. Technol. Biotechnol., 78, 611 (2003); https://doi.org/10.1002/jctb.743.
S.A. Odoemelam, U.N. Emeh and N.O. Eddy, J. Taibah Univ. Sci., 12, 255 (2018); https://doi.org/10.1080/16583655.2018.1465725.
B.S. Reddy and K. Ravindhranath, Int. J. Chemtech Res., 6, 5612 (2014).
M. Khodaie, N. Ghasemi, B. Moradi and M. Rahimi, J. Chem., 2013, Article ID 383985 (2013); https://doi.org/10.1155/2013/383985.
Y. Hanumantharao, M. Kishore and K. Ravindhranth, Elect. J. Environ., Agricul. Food Chem., 11, 442 (2012).
Y. Hanumantharao, M. Kishore and K. Ravindhranath, Int. J. Chemtech Res., 4, 1686 (2012).
S. Ravulapalli and R. Kunta, J. Fluor. Chem., 193, 58 (2017); https://doi.org/10.1016/j.jfluchem.2016.11.013.
M. Suneetha, B.S. Sundar and K. Ravindhranath, Int. J. ChemTech Res., 15, 93 (2014).
M. Suneetha, B.S. Sundar and K. Ravindhranath, Int. J. Environ.Technol. Manag., 18, 420 (2015); https://doi.org/10.1504/IJETM.2015.073079.
M. Suneetha, B.S. Sundar and K. Ravindhranath, Asian J. Water Environ. Pollut., 12, 33 (2015); https://doi.org/10.3233/AJW-150005.
S. Ravulapalli and R. Kunta, Water Sci. Technol., 78, 1377 (2018); https://doi.org/10.2166/wst.2018.413.
G. Gebrehawaria, A. Hussen and V.M. Rao, Int. J. Environ. Sci. Technol. 12, 1569 (2015); https://doi.org/10.1007/s13762-014-0530-2.
S. Sasikala and G. Muthuraman, Ind. Chem., 1, 105 (2015); https://doi.org/10.4172/2469-9764.1000105.
A.A. Moosa, A.M. Ridha and N.A. Hussien, Am. J. Mater. Sci., 6, 105 (2016); https://doi.org/10.5923/j.materials.20160604.04.
H. Liu, Y. Dong, Y. Liu and H. Wang, J. Hazard. Mater., 178, 1132 (2010); https://doi.org/10.1016/j.jhazmat.2010.01.117.
J.Huang, N.R. Kankanamge, C. Chow, D.T. Welsh, T. Li and P.R. Teasdale, J. Environ. Sci., 63, 174 (2018); https://doi.org/10.1016/j.jes.2017.09.009.
A.F.A. Bakar, I. Yusoff, N.T. Fatt, F. Othman and M.A. Ashraf, BioMed Res. Int., 2013, Article ID 890803 (2013); http://dx.doi.org/10.1155/2013/890803.
R. Shen and J.F. Ma, J. Exp. Botany, 52, 1683 (2001).
M. Suneetha and K. Ravindhranath, Indian J. Chem. Technol., 25, 345 (2018).
M. Suneetha and K. Ravindhranath, J. Chem. Pharm. Res., 6, 408 (2014).
Y. Hanumantha Rao and K. Ravindhranath, Int. J. Chemtech Res., 8, 784 (2015).
N. Berraksu, E.M. Ayan and J. Yanik, J. Chem., 2013, Article ID 427586, (2013); https://doi.org/10.1155/2013/427586.
F.B.A. Rahman and M. Akter, Int. J. Waste Resour., 6, 244 (2016); https://doi.org/10.4172/2252-5211.1000244.
Y.A. Argun, A. Karacali, U. Calisir, N. Kilinc and H. Irak, Int. J. Adv. Res., 5, 707 (2017); https://doi.org/10.21474/IJAR01/5110.
G. Kiely, Environmental Engineering, McGraw-hall International Editions. 1998.
Metcalf and Eddy. Wastewater Engineering: Treatment of Reuse. 4th. Ed, New York: McGraw Hill Co. 2003