Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biosynthesis and Characterization of Bioplastic Poly-3-hydroxybutyrate from Hydrolyzate of Ulva using Bacillus subtilis rnM
Corresponding Author(s) : T. Revadhi
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Biopolymers are a new generation biopolymers, which have wide range of applications. Poly-3-hydroxybutyrate (PHB) is one of the best biopolymers for replacement of non-biodegradable petroleum-based plastic and can be produced from organic wastes source by some bacterial strains under imbalance growth conditions. In present study, hydrolyzate was prepared from biomass of seaweed Ulva by acid pre-treated and used as a feedstock for PHB biosynthesis by Bacillu subtilis rnM. The pre-treatment was carried out by two different pre-treatment conditions such as room temperature and high temperature and pressure (HTP). The hydrolysate prepared by 2 % HCl at HTP supported for the maximum PHB biosynthesis than the other pre-treated conditions. The yield of PHB obtained by B. subtilis rnM when tested with laboratory grade sugars was lower to that achieved with hydrolysate of Ulva sp. The biosynthesized PHB was characterized by TGA, DSC, FTIR, XRD and NMR techniques.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Davis, R. Kataria, F. Cerrone, T. Woods, S. Kenny, A. O’Donovan, M. Guzik, H. Shaikh, G. Duane, V.K. Gupta, M.G. Tuohy, R.B. Padamatti, E. Casey and K.E. O’Connor, Bioresour. Technol., 150, 202 (2013); https://doi.org/10.1016/j.biortech.2013.10.001.
- R. Amache, A. Sukan, M. Safari, I. Roy and T. Keshavarz, Chem. Eng. Trans., 32, 931 (2013); https://doi.org/10.3303/CET1332156.
- A.K. Bhuwal, G. Singh, N.K. Aggarwal, V. Goyal and A. Yadav, Bioresour. Bioprocess, 1, 9 (2014); https://doi.org/10.1186/s40643-014-0009-5.
- E. Markl, H. Grünbichler and M. Lackner, Nutr. Food Sci., 2, 1 (2018); https://doi.org/10.31031/NTNF.2018.02.000546.
- N. Ceyhan and G. Ozdemir, Afr. J. Microbiol. Res., 5, 690 (2011).
- https://cleantechnica.com/2018/07/31/demand-for-biodegradable-plastics-expected-to-surge/
- L.F. Silva, M.K. Taciro, M.E. Michelin Ramos, J.M. Carter, J.G.C. Pradella and J.G.C. Gomez, J. Ind. Microbiol. Biotechnol., 31, 245 (2004); https://doi.org/10.1007/s10295-004-0136-7.
- P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney and S. Shah, Biotechnol. Adv., 25, 148 (2007); https://doi.org/10.1016/j.biotechadv.2006.11.007.
- C. Nielsen, A. Rahman, A.U. Rehman, M.K. Walsh and C.D. Miller, Microb. Biotechnol., 10, 1338 (2017); https://doi.org/10.1111/1751-7915.12776.
- J.L. Ienczak, W. Schmidell and G.M.F. deAragao, J. Ind. Microbiol. Biotechnol., 40, 275 (2013); https://doi.org/10.1007/s10295-013-1236-z.
- G.W. Maneveldt, Y.M. Chamberlain and D.W. Keats, Afr. J. Bot., 74, 555 (2008); https://doi.org/10.1016/j.sajb.2008.02.002.
- G. Bedoux, K. Hardouin, A.S. Burlot and N. Bourgougnon, Adv. Bot. Res., 71, 345 (2014); https://doi.org/10.1016/B978-0-12-408062-1.00012-3.
- A. Peña-Rodríguez, T.P. Mawhinney, D. Ricque-Marie and L.E. Cruz-Suárez, Food Chem., 129, 491 (2011); https://doi.org/10.1016/j.foodchem.2011.04.104.
- G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030.
- M. Koller, R. Bona, C. Hermann, P. Horvat, J. Martinz, J. Neto, L. Pereira, P. Varila and G. Braunegg, Biocatal. Biotransform., 23, 329 (2005); https://doi.org/10.1080/10242420500292252.
- J.H. Law and R.A. Slepecky, J. Bacteriol., 82, 33 (1961).
- M. Kato, H.J. Bao, C.K. Kang, T. Fukui and Y. Doi, Appl. Microbiol. Biotechnol., 45, 363 (1996); https://doi.org/10.1007/s002530050697.
- W. Pan, J.A. Perrotta, A.J. Stipanovic, C.T. Nomura and J.P. Nakas, J. Ind. Microbiol. Biotechnol., 39, 459 (2012); https://doi.org/10.1007/s10295-011-1040-6.
- S. Taghavi, C. Garafola, S. Monchy, L. Newman, A. Hoffman, N. Weyens, T. Barac, J. Vangronsveld and D. van der Lelie, Appl. Environ. Microbiol., 75, 748 (2009); https://doi.org/10.1128/AEM.02239-08.
- S. Le Meur, M. Zinn, T. Egli, L. Thony-Meyer and Q. Ren, BMC Biotechnol., 12, 53 (2012); https://doi.org/10.1186/1472-6750-12-53.
- S.V. Reddy, M. Thirumala and S.K. Mahmood, World J. Microbiol. Biotechnol., 25, 391 (2009); https://doi.org/10.1007/s11274-008-9903-3.
- L. Ma, H. Zhang, Q. Liu, J. Chen, J. Zhang and G.Q. Chen, Bioresour. Technol., 100, 4891 (2009); https://doi.org/10.1016/j.biortech.2009.05.017.
- Q. Liu, G. Luo, X.R. Zhou and G.Q. Chen, Metab. Eng., 13, 11 (2011); https://doi.org/10.1016/j.ymben.2010.10.004.
References
R. Davis, R. Kataria, F. Cerrone, T. Woods, S. Kenny, A. O’Donovan, M. Guzik, H. Shaikh, G. Duane, V.K. Gupta, M.G. Tuohy, R.B. Padamatti, E. Casey and K.E. O’Connor, Bioresour. Technol., 150, 202 (2013); https://doi.org/10.1016/j.biortech.2013.10.001.
R. Amache, A. Sukan, M. Safari, I. Roy and T. Keshavarz, Chem. Eng. Trans., 32, 931 (2013); https://doi.org/10.3303/CET1332156.
A.K. Bhuwal, G. Singh, N.K. Aggarwal, V. Goyal and A. Yadav, Bioresour. Bioprocess, 1, 9 (2014); https://doi.org/10.1186/s40643-014-0009-5.
E. Markl, H. Grünbichler and M. Lackner, Nutr. Food Sci., 2, 1 (2018); https://doi.org/10.31031/NTNF.2018.02.000546.
N. Ceyhan and G. Ozdemir, Afr. J. Microbiol. Res., 5, 690 (2011).
https://cleantechnica.com/2018/07/31/demand-for-biodegradable-plastics-expected-to-surge/
L.F. Silva, M.K. Taciro, M.E. Michelin Ramos, J.M. Carter, J.G.C. Pradella and J.G.C. Gomez, J. Ind. Microbiol. Biotechnol., 31, 245 (2004); https://doi.org/10.1007/s10295-004-0136-7.
P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney and S. Shah, Biotechnol. Adv., 25, 148 (2007); https://doi.org/10.1016/j.biotechadv.2006.11.007.
C. Nielsen, A. Rahman, A.U. Rehman, M.K. Walsh and C.D. Miller, Microb. Biotechnol., 10, 1338 (2017); https://doi.org/10.1111/1751-7915.12776.
J.L. Ienczak, W. Schmidell and G.M.F. deAragao, J. Ind. Microbiol. Biotechnol., 40, 275 (2013); https://doi.org/10.1007/s10295-013-1236-z.
G.W. Maneveldt, Y.M. Chamberlain and D.W. Keats, Afr. J. Bot., 74, 555 (2008); https://doi.org/10.1016/j.sajb.2008.02.002.
G. Bedoux, K. Hardouin, A.S. Burlot and N. Bourgougnon, Adv. Bot. Res., 71, 345 (2014); https://doi.org/10.1016/B978-0-12-408062-1.00012-3.
A. Peña-Rodríguez, T.P. Mawhinney, D. Ricque-Marie and L.E. Cruz-Suárez, Food Chem., 129, 491 (2011); https://doi.org/10.1016/j.foodchem.2011.04.104.
G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030.
M. Koller, R. Bona, C. Hermann, P. Horvat, J. Martinz, J. Neto, L. Pereira, P. Varila and G. Braunegg, Biocatal. Biotransform., 23, 329 (2005); https://doi.org/10.1080/10242420500292252.
J.H. Law and R.A. Slepecky, J. Bacteriol., 82, 33 (1961).
M. Kato, H.J. Bao, C.K. Kang, T. Fukui and Y. Doi, Appl. Microbiol. Biotechnol., 45, 363 (1996); https://doi.org/10.1007/s002530050697.
W. Pan, J.A. Perrotta, A.J. Stipanovic, C.T. Nomura and J.P. Nakas, J. Ind. Microbiol. Biotechnol., 39, 459 (2012); https://doi.org/10.1007/s10295-011-1040-6.
S. Taghavi, C. Garafola, S. Monchy, L. Newman, A. Hoffman, N. Weyens, T. Barac, J. Vangronsveld and D. van der Lelie, Appl. Environ. Microbiol., 75, 748 (2009); https://doi.org/10.1128/AEM.02239-08.
S. Le Meur, M. Zinn, T. Egli, L. Thony-Meyer and Q. Ren, BMC Biotechnol., 12, 53 (2012); https://doi.org/10.1186/1472-6750-12-53.
S.V. Reddy, M. Thirumala and S.K. Mahmood, World J. Microbiol. Biotechnol., 25, 391 (2009); https://doi.org/10.1007/s11274-008-9903-3.
L. Ma, H. Zhang, Q. Liu, J. Chen, J. Zhang and G.Q. Chen, Bioresour. Technol., 100, 4891 (2009); https://doi.org/10.1016/j.biortech.2009.05.017.
Q. Liu, G. Luo, X.R. Zhou and G.Q. Chen, Metab. Eng., 13, 11 (2011); https://doi.org/10.1016/j.ymben.2010.10.004.