Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalytic Hydrothermal Liquefaction of Microalgae using Fe-MCM 41 Catalyst in Presence of Carbon Monoxide
Corresponding Author(s) : R. Sharma
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
Among the various types of biomass, microalgae have a potential to become a significant energy source for the production of third generation biofuel. The hydrothermal liquefaction is the direct biomass-to-liquid conversion route carried out in the hot compressed water with or without the presence of a catalyst. In this study, the process pressure and temperature is reduced, but at a lower temperature, bio-oil yield is not high enough to make hydrothermal liquefaction an economical technique. Thus, Fe-MCM 41 catalyst was used to increase the bio-oil yield at low temperatures (250 ºC). This catalyst increased the total bio-oil yield from 42.7 to 61.28 % in hydrothermal liquefaction of Chlorella pyrenoidosa. The bio-oil yield (%) of oil 1, 2 & 3 were 24.72, 17.08 & 19.48, respectively obtained at 250 ºC by using catalyst. Moreover, use of catalyst also resulted in the decrease in oxygen and nitrogen contents of bio-oil and consequently increases in its heating value.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. López Barreiro, S. Riede, U. Hornung, A. Kruse and W. Prins, Algal Res., 12, 206 (2015); https://doi.org/10.1016/j.algal.2015.08.025.
- L. Garcia Alba, C. Torri, C. Samorì, J. van der Spek, D. Fabbri, S.R.A. Kersten and D.W.F.W. Brilman, Energy Fuels, 26, 642 (2012); https://doi.org/10.1021/ef201415s.
- P. Biller, A.B. Ross, S.C. Skill, A. Lea-Langton, B. Balasundaram, C. Hall, R. Riley and C.A. Llewellyn, Algal Res., 1, 70 (2012); https://doi.org/10.1016/j.algal.2012.02.002.
- S.N. Xiu and A. Shahbazi, Renew. Sustain. Energy Rev., 16, 4406 (2012); https://doi.org/10.1016/j.rser.2012.04.028.
- D.L. Barreiro, W. Prins, F. Ronsse and W. Brilman, Biomass Bioenergy, 53, 113 (2013); https://doi.org/10.1016/j.biombioe.2012.12.029.
- S.S. Toor, L. Rosendahl and A. Rudolf, Energy, 36, 2328 (2011); https://doi.org/10.1016/j.energy.2011.03.013.
- U. Jena, K.C. Das and J.R. Kastner, Appl. Energy, 98, 368 (2012); https://doi.org/10.1016/j.apenergy.2012.03.056.
- T. Minowa, S. Yokoyama, M. Kishimoto and T. Okakura, Fuel, 74, 1735 (1995); https://doi.org/10.1016/0016-2361(95)80001-X.
- S.P. Zou, Y.L. Wu, M.D. Yang, I. Kaleem, L. Chun, J.M. Tong, Energy, 35, 06 (2010).
- P. Biller, R. Riley and A.B. Ross, Bioresour. Technol., 102, 4841 (2011); https://doi.org/10.1016/j.biortech.2010.12.113.
- P.G. Duan and P.E. Savage, Ind. Eng. Chem. Res., 50, 52 (2011); https://doi.org/10.1021/ie100758s.
- Y. Chen, Y. Wu, R. Ding, P. Zhang, J. Liu, M. Yang and P. Zhang, Biofuels Food, 61, 1118 (2015).
- J. Bian, Q. Zhang, P. Zhang, L. Feng and C. Li, Catal. Today, 293-294, 159 (2017); https://doi.org/10.1016/j.cattod.2017.02.008.
- G. Govindasamy, R. Sharma and S. Subramanian, Biofuels, (2018); https://doi.org/10.1080/17597269.2018.1433967.
- G. Yu, Y. Zhang, L. Schideman, Z. Wang, T. L. Funk, Trans. ASABE, 54, 239 (2011); https://doi.org/10.13031/2013.36241.
- G. Yu, Y.H. Zhang, B. Guo, T. Funk and L. Schideman, BioEnergy Res., 7, 1317 (2014); https://doi.org/10.1007/s12155-014-9471-3.
- Y.F. Xu, X.J. Zheng, H.Q. Yu and X.G. Hu, Bioresour. Technol., 156, 1 (2014); https://doi.org/10.1016/j.biortech.2014.01.010.
- A. Liu, W. Chen, L. Zheng and L. Song, Progr. Nat. Sci.: Mater. Int., 21, 269 (2011); https://doi.org/10.1016/S1002-0071(12)60057-4.
- T.M. Brown, P.G. Duan and P.E. Savage, Energy Fuels, 24, 3639 (2010); https://doi.org/10.1021/ef100203u.
- J.S. Choi, D.J. Kim, S.H. Chang and W.S. Ahn, Appl. Catal. A Gen., 254, 225 (2003); https://doi.org/10.1016/S0926-860X(03)00485-X.
- X. Song, P. Qu, N. Jiang, H. Yang and G. Qiu, Colloids Surf. A Physicochem. Eng. Asp., 313-314, 193 (2008); https://doi.org/10.1016/j.colsurfa.2007.05.040.
- S. Karagoz, T. Bhaskar, A. Muto and Y. Sakata, Bioresour. Technol., 97, 90 (2006); https://doi.org/10.1016/j.biortech.2005.02.051.
- W. Wang, Y. Xu, X. Wang, B. Zhang, W. Tian and J. Zhang, Bioresour. Technol., 250, 474 (2018); https://doi.org/10.1016/j.biortech.2017.11.051.
- J. Sun, J. Yang and M. Shi, Transac. Tianjin Univ., 23, 301 (2017); https://doi.org/10.1007/s12209-017-0051-4.
- R.L. Eager, J.F. Mathews, J.M. Pepper and H. Zohdi, Can. J. Chem., 59, 2191 (1981); https://doi.org/10.1139/v81-316.
References
D. López Barreiro, S. Riede, U. Hornung, A. Kruse and W. Prins, Algal Res., 12, 206 (2015); https://doi.org/10.1016/j.algal.2015.08.025.
L. Garcia Alba, C. Torri, C. Samorì, J. van der Spek, D. Fabbri, S.R.A. Kersten and D.W.F.W. Brilman, Energy Fuels, 26, 642 (2012); https://doi.org/10.1021/ef201415s.
P. Biller, A.B. Ross, S.C. Skill, A. Lea-Langton, B. Balasundaram, C. Hall, R. Riley and C.A. Llewellyn, Algal Res., 1, 70 (2012); https://doi.org/10.1016/j.algal.2012.02.002.
S.N. Xiu and A. Shahbazi, Renew. Sustain. Energy Rev., 16, 4406 (2012); https://doi.org/10.1016/j.rser.2012.04.028.
D.L. Barreiro, W. Prins, F. Ronsse and W. Brilman, Biomass Bioenergy, 53, 113 (2013); https://doi.org/10.1016/j.biombioe.2012.12.029.
S.S. Toor, L. Rosendahl and A. Rudolf, Energy, 36, 2328 (2011); https://doi.org/10.1016/j.energy.2011.03.013.
U. Jena, K.C. Das and J.R. Kastner, Appl. Energy, 98, 368 (2012); https://doi.org/10.1016/j.apenergy.2012.03.056.
T. Minowa, S. Yokoyama, M. Kishimoto and T. Okakura, Fuel, 74, 1735 (1995); https://doi.org/10.1016/0016-2361(95)80001-X.
S.P. Zou, Y.L. Wu, M.D. Yang, I. Kaleem, L. Chun, J.M. Tong, Energy, 35, 06 (2010).
P. Biller, R. Riley and A.B. Ross, Bioresour. Technol., 102, 4841 (2011); https://doi.org/10.1016/j.biortech.2010.12.113.
P.G. Duan and P.E. Savage, Ind. Eng. Chem. Res., 50, 52 (2011); https://doi.org/10.1021/ie100758s.
Y. Chen, Y. Wu, R. Ding, P. Zhang, J. Liu, M. Yang and P. Zhang, Biofuels Food, 61, 1118 (2015).
J. Bian, Q. Zhang, P. Zhang, L. Feng and C. Li, Catal. Today, 293-294, 159 (2017); https://doi.org/10.1016/j.cattod.2017.02.008.
G. Govindasamy, R. Sharma and S. Subramanian, Biofuels, (2018); https://doi.org/10.1080/17597269.2018.1433967.
G. Yu, Y. Zhang, L. Schideman, Z. Wang, T. L. Funk, Trans. ASABE, 54, 239 (2011); https://doi.org/10.13031/2013.36241.
G. Yu, Y.H. Zhang, B. Guo, T. Funk and L. Schideman, BioEnergy Res., 7, 1317 (2014); https://doi.org/10.1007/s12155-014-9471-3.
Y.F. Xu, X.J. Zheng, H.Q. Yu and X.G. Hu, Bioresour. Technol., 156, 1 (2014); https://doi.org/10.1016/j.biortech.2014.01.010.
A. Liu, W. Chen, L. Zheng and L. Song, Progr. Nat. Sci.: Mater. Int., 21, 269 (2011); https://doi.org/10.1016/S1002-0071(12)60057-4.
T.M. Brown, P.G. Duan and P.E. Savage, Energy Fuels, 24, 3639 (2010); https://doi.org/10.1021/ef100203u.
J.S. Choi, D.J. Kim, S.H. Chang and W.S. Ahn, Appl. Catal. A Gen., 254, 225 (2003); https://doi.org/10.1016/S0926-860X(03)00485-X.
X. Song, P. Qu, N. Jiang, H. Yang and G. Qiu, Colloids Surf. A Physicochem. Eng. Asp., 313-314, 193 (2008); https://doi.org/10.1016/j.colsurfa.2007.05.040.
S. Karagoz, T. Bhaskar, A. Muto and Y. Sakata, Bioresour. Technol., 97, 90 (2006); https://doi.org/10.1016/j.biortech.2005.02.051.
W. Wang, Y. Xu, X. Wang, B. Zhang, W. Tian and J. Zhang, Bioresour. Technol., 250, 474 (2018); https://doi.org/10.1016/j.biortech.2017.11.051.
J. Sun, J. Yang and M. Shi, Transac. Tianjin Univ., 23, 301 (2017); https://doi.org/10.1007/s12209-017-0051-4.
R.L. Eager, J.F. Mathews, J.M. Pepper and H. Zohdi, Can. J. Chem., 59, 2191 (1981); https://doi.org/10.1139/v81-316.