Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasonic Study of Effect of Temperature and Concentration on Molecular Interaction in Ternary Liquid Mixture (Propylene Glycol + Benzene + Ethanol)
Corresponding Author(s) : Tara Bhatt
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
Ultrasonic velocity, density and viscosity in the ternary mixture of propylene glycol, benzene and ethanol have been measured at 303, 308, 313 and 318 K and 2 MHz. The values of excess thermo-acoustic parameters uE, ηE, KsE, LfE, VmE, ZE; and the Lennard-Jones potential repulsive term exponent (n) have been calculated by using the values of measured parameters. The variation in values and signs of excess parameters with increase in concentration of propylene glycol and temperature is explained by the mechanism of changing the nature of molecular interactions between unlike molecules. Further, the experimental ultrasonic velocities are compared with theoretical values calculated by using various theories like Nomoto′s relation (NR), Schaaffs′s collision factor theory (CFT) and Jacobson′s free length theory (FLT). The relative applicability of these theories is discussed in terms of average percentage errors (APE). The average percentage errors follows the order CFT < NR < FLT at each temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Gowrisankar, P. Venkateswarlu, K. Sivakumar and S. Sivarambabu, J. Solution Chem., 42, 916 (2013); https://doi.org/10.1007/s10953-013-0003-0.
- Sk. Nyamathulla and Md. Nayeem, J. Chem. Pharm. Sci., 9, 615 (2016).
- P. Yadav and R. Yadav, J. Chem. Chem. Sci., 3, 269 (2013).
- M. Shannigrahi, R. Pramanik and S. Bagchi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 2921 (2003); https://doi.org/10.1016/S1386-1425(03)00120-3.
- D. Banerjee, A.K. Laha and S. Bagchi, J. Photochem. Photobiol. Chem., 85, 153 (1995); https://doi.org/10.1016/1010-6030(94)03904-9.
- S. Kumar, S. Sagar and M. Gupta, J. Mol. Liq., 214, 306 (2016); https://doi.org/10.1016/j.molliq.2015.12.012.
- P. Alka Tadkalkar, P. Pravina, Govind Pawar, K. Bichile, Asian J. Chem., 24, 5782 (2012).
- S. Anuradha, S. Prema and K. Rajagopal, J. Pure Appl. Ultrason., 27, 49 (2005).
- V. Pandiyan, P. Vasantharani, S.L. Oswal and A.N. Kannappan, J. Chem. Eng. Data, 56, 269 (2011); https://doi.org/10.1021/je1008262.
- A. Ali, S. Hyder and A.K. Nain, J. Mol. Liq., 79, 89 (1999); https://doi.org/10.1016/S0167-7322(98)00105-6.
- D. Sravan Kumar and D. Krishana Rao, Indian J. Pure Appl. Phys., 45, 210 (2007).
- H. Kirss, M. Kuus, E. Siimer and L. Kudryavtseva, Proc. Estonian Acad. Sci. Chem., 50, 89 (2001).
- S.B. Alisha, B.V. Ramesh, K.S.V. Krishna Rao, M.C.S. Subha and K.C. Rao, Indian J. Adv. Chem. Sci., 5, 155 (2017); https://doi.org/10.22607/IJACS.2017.503007.
- B. Hemalatha and P. Vasantharani, Arch. Appl. Sci. Res., 5, 31 (2013).
- L. Palaniappa, Asian J. Mater. Sci., 4, 21 (2012); https://doi.org/10.3923/ajmskr.2012.21.27.
- N. Mohan, K.P. Vijayalakshmi, N. Koga and C.H. Suresh, J. Comput. Chem., 31, 2874 (2010); https://doi.org/10.1002/jcc.21582.
- D. Braga, F. Grepioni and E. Tedesco, Organometallics, 17, 2669 (1998); https://doi.org/10.1021/om971096h.
- R.L. Martis, S.K. Singh, M.M. Gromiha and C. Santhosh, J. Theor. Biol., 250, 655 (2008); https://doi.org/10.1016/j.jtbi.2007.10.024.
- Ch. Sowjanya and S.S. Sastry, Int. J. Eng. Res. Technol., 6, 17 (2017).
- L. Palaniappan and R. Thiyagarajan, Indian J. Chem., 47B, 1906 (2008).
- N.G. Tsierkezos and M.M. Palaiologou, Phys. Chem. Liq., 47, 447 (2009); https://doi.org/10.1080/00319100802104855.
- S.M. Pereira, M.A. Rivas and T.P. Iglesias, J. Chem. Eng. Data, 47, 1363 (2002); https://doi.org/10.1021/je020028l.
- S. Azizian and M. Hemmati, J. Chem. Eng. Data, 48, 662 (2003); https://doi.org/10.1021/je025639s.
- C. Yang, P. Ma, F. Jing and D. Tang, J. Chem. Eng. Data, 48, 836 (2003); https://doi.org/10.1021/je020140j.
- O. Nomoto, J. Phys. Soc. Jpn., 13, 1528 (1958); https://doi.org/10.1143/JPSJ.13.1528.
- W. Schaffs, Acustica, 30, 275 (1974).
- B. Jacobson, J. Chem. Phys., 20, 927 (1952); https://doi.org/10.1063/1.1700615.
- H. Agarwal, Ultrasonic, Viscometric and Volumetric Studies of Some Molecular Species Exhibiting Complex Formation in Solution, Ph.D. Thesis, University of Lucknow, Lucknow, India (2014).
- S. Prakash and J.D. Pandey, J. Sci. Ind. Res., 21B, 593 (1962).
- B. Jacobson, E. Halonen and C. Faurholt, Acta Chem. Scand., 6, 1485 (1952); https://doi.org/10.3891/acta.chem.scand.06-1485.
- R.T. Beyer and S.L. Letcher, Physical Ultrasonics, Academic Press: New York (1969).
- A.K. Dash and R. Paikaray, Res. J. Phys. Sci., 1, 12 (2013).
- Q.-S. Du, Q.-Y. Wang, L.-Q. Du, D. Chen and R.-B. Huang, Chem. Cent.J., 7, 92 (2013); https://doi.org/10.1186/1752-153X-7-92.
- A.K. Nain, J. Mol. Liq., 140, 108 (2008); https://doi.org/10.1016/j.molliq.2008.01.016.
- S. Elangovan and S. Mullainathan, Indian J. Phys., 86, 727 (2012); https://doi.org/10.1007/s12648-012-0132-0.
- G. Savaroglu and E. Aral, Pramana J. Phys., 66, 435 (2006); https://doi.org/10.1007/BF02704396.
- S. Olswal and M.A. Rathnam, Can. J. Chem., 62, 2851 (1984); https://doi.org/10.1139/v84-482.
- A. Ali, A.K. Nain, N. Kumar and M. Ibrahim, Chin. J. Chem., 21, 253 (2003); https://doi.org/10.1002/cjoc.20030210309.
- W. Kauzmann and H. Eyring, J. Am. Chem. Soc., 62, 3113 (1940); https://doi.org/10.1021/ja01868a059.
- A. All and A.K. Nain, Indian J. Chem., 35A, 751 (1996).
- L.J. Fort and W.R. Moore, Trans. Faraday Soc., 62, 1112 (1966); https://doi.org/10.1039/tf9666201112.
- H.N. Solimo, R. Riggio, F. Davolio and M. Katz, Can. J. Chem., 53, 1258 (1975); https://doi.org/10.1139/v75-173.
- N. Islam and A. Ali, Bull. Chem. Soc. Jpn., 53, 2371 (1980); https://doi.org/10.1246/bcsj.53.2371.
- P.P. Patil, S.R. Patil, A.U. Borse and D.G. Hundiwale, Rasayan J. Chem., 4, 599 (2011).
- M.K. Rawat and Sangeeta, Indian J. Pure Appl. Phys., 46, 187 (2008).
- R.F. de Freitas and M. Schapira, Med. Chem. Commun., 8, 1970 (2017); https://doi.org/10.1039/C7MD00381A.
- M. Sujata and P. Rita, Res. J. Chem. Sci., 3, 24 (2013).
References
M. Gowrisankar, P. Venkateswarlu, K. Sivakumar and S. Sivarambabu, J. Solution Chem., 42, 916 (2013); https://doi.org/10.1007/s10953-013-0003-0.
Sk. Nyamathulla and Md. Nayeem, J. Chem. Pharm. Sci., 9, 615 (2016).
P. Yadav and R. Yadav, J. Chem. Chem. Sci., 3, 269 (2013).
M. Shannigrahi, R. Pramanik and S. Bagchi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 2921 (2003); https://doi.org/10.1016/S1386-1425(03)00120-3.
D. Banerjee, A.K. Laha and S. Bagchi, J. Photochem. Photobiol. Chem., 85, 153 (1995); https://doi.org/10.1016/1010-6030(94)03904-9.
S. Kumar, S. Sagar and M. Gupta, J. Mol. Liq., 214, 306 (2016); https://doi.org/10.1016/j.molliq.2015.12.012.
P. Alka Tadkalkar, P. Pravina, Govind Pawar, K. Bichile, Asian J. Chem., 24, 5782 (2012).
S. Anuradha, S. Prema and K. Rajagopal, J. Pure Appl. Ultrason., 27, 49 (2005).
V. Pandiyan, P. Vasantharani, S.L. Oswal and A.N. Kannappan, J. Chem. Eng. Data, 56, 269 (2011); https://doi.org/10.1021/je1008262.
A. Ali, S. Hyder and A.K. Nain, J. Mol. Liq., 79, 89 (1999); https://doi.org/10.1016/S0167-7322(98)00105-6.
D. Sravan Kumar and D. Krishana Rao, Indian J. Pure Appl. Phys., 45, 210 (2007).
H. Kirss, M. Kuus, E. Siimer and L. Kudryavtseva, Proc. Estonian Acad. Sci. Chem., 50, 89 (2001).
S.B. Alisha, B.V. Ramesh, K.S.V. Krishna Rao, M.C.S. Subha and K.C. Rao, Indian J. Adv. Chem. Sci., 5, 155 (2017); https://doi.org/10.22607/IJACS.2017.503007.
B. Hemalatha and P. Vasantharani, Arch. Appl. Sci. Res., 5, 31 (2013).
L. Palaniappa, Asian J. Mater. Sci., 4, 21 (2012); https://doi.org/10.3923/ajmskr.2012.21.27.
N. Mohan, K.P. Vijayalakshmi, N. Koga and C.H. Suresh, J. Comput. Chem., 31, 2874 (2010); https://doi.org/10.1002/jcc.21582.
D. Braga, F. Grepioni and E. Tedesco, Organometallics, 17, 2669 (1998); https://doi.org/10.1021/om971096h.
R.L. Martis, S.K. Singh, M.M. Gromiha and C. Santhosh, J. Theor. Biol., 250, 655 (2008); https://doi.org/10.1016/j.jtbi.2007.10.024.
Ch. Sowjanya and S.S. Sastry, Int. J. Eng. Res. Technol., 6, 17 (2017).
L. Palaniappan and R. Thiyagarajan, Indian J. Chem., 47B, 1906 (2008).
N.G. Tsierkezos and M.M. Palaiologou, Phys. Chem. Liq., 47, 447 (2009); https://doi.org/10.1080/00319100802104855.
S.M. Pereira, M.A. Rivas and T.P. Iglesias, J. Chem. Eng. Data, 47, 1363 (2002); https://doi.org/10.1021/je020028l.
S. Azizian and M. Hemmati, J. Chem. Eng. Data, 48, 662 (2003); https://doi.org/10.1021/je025639s.
C. Yang, P. Ma, F. Jing and D. Tang, J. Chem. Eng. Data, 48, 836 (2003); https://doi.org/10.1021/je020140j.
O. Nomoto, J. Phys. Soc. Jpn., 13, 1528 (1958); https://doi.org/10.1143/JPSJ.13.1528.
W. Schaffs, Acustica, 30, 275 (1974).
B. Jacobson, J. Chem. Phys., 20, 927 (1952); https://doi.org/10.1063/1.1700615.
H. Agarwal, Ultrasonic, Viscometric and Volumetric Studies of Some Molecular Species Exhibiting Complex Formation in Solution, Ph.D. Thesis, University of Lucknow, Lucknow, India (2014).
S. Prakash and J.D. Pandey, J. Sci. Ind. Res., 21B, 593 (1962).
B. Jacobson, E. Halonen and C. Faurholt, Acta Chem. Scand., 6, 1485 (1952); https://doi.org/10.3891/acta.chem.scand.06-1485.
R.T. Beyer and S.L. Letcher, Physical Ultrasonics, Academic Press: New York (1969).
A.K. Dash and R. Paikaray, Res. J. Phys. Sci., 1, 12 (2013).
Q.-S. Du, Q.-Y. Wang, L.-Q. Du, D. Chen and R.-B. Huang, Chem. Cent.J., 7, 92 (2013); https://doi.org/10.1186/1752-153X-7-92.
A.K. Nain, J. Mol. Liq., 140, 108 (2008); https://doi.org/10.1016/j.molliq.2008.01.016.
S. Elangovan and S. Mullainathan, Indian J. Phys., 86, 727 (2012); https://doi.org/10.1007/s12648-012-0132-0.
G. Savaroglu and E. Aral, Pramana J. Phys., 66, 435 (2006); https://doi.org/10.1007/BF02704396.
S. Olswal and M.A. Rathnam, Can. J. Chem., 62, 2851 (1984); https://doi.org/10.1139/v84-482.
A. Ali, A.K. Nain, N. Kumar and M. Ibrahim, Chin. J. Chem., 21, 253 (2003); https://doi.org/10.1002/cjoc.20030210309.
W. Kauzmann and H. Eyring, J. Am. Chem. Soc., 62, 3113 (1940); https://doi.org/10.1021/ja01868a059.
A. All and A.K. Nain, Indian J. Chem., 35A, 751 (1996).
L.J. Fort and W.R. Moore, Trans. Faraday Soc., 62, 1112 (1966); https://doi.org/10.1039/tf9666201112.
H.N. Solimo, R. Riggio, F. Davolio and M. Katz, Can. J. Chem., 53, 1258 (1975); https://doi.org/10.1139/v75-173.
N. Islam and A. Ali, Bull. Chem. Soc. Jpn., 53, 2371 (1980); https://doi.org/10.1246/bcsj.53.2371.
P.P. Patil, S.R. Patil, A.U. Borse and D.G. Hundiwale, Rasayan J. Chem., 4, 599 (2011).
M.K. Rawat and Sangeeta, Indian J. Pure Appl. Phys., 46, 187 (2008).
R.F. de Freitas and M. Schapira, Med. Chem. Commun., 8, 1970 (2017); https://doi.org/10.1039/C7MD00381A.
M. Sujata and P. Rita, Res. J. Chem. Sci., 3, 24 (2013).