Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis and Antimicrobial Activity of Some Novel N-Arylimidazo[1,2-a]pyrazine-2-Carboxamide Derivatives
Corresponding Author(s) : Nannapaneni Madhavi
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
The article deals with the synthesis of some novel N-arylimidazo[1,2-a]pyrazine-2-carboxamides (7a-l) by condensation reaction of imidazo[1,2-a]pyrazine-2-carboxylic acid (5) with different aliphatic/aromatic amines (6a-l) by using 1-methylimidazole, Mukaiyama’s reagent and 2-chloro-1-methylpyridinium iodide under microwave irradiation conditions. A new series of compounds 7 have been prepared from 2-iodopyrazine (1). Compound 1 on purged with ammonia gas in the presence of Cu2O and K2CO3 furnishes pyrazin-2-amine (2), which is treated with ethyl 3-bromo-2-oxopropanoate (3) to produce ethyl imidazo[1,2-a]pyrazine-2-carboxylate (4), which on hydrolysis with NaOH yields imidazo[1,2-a]pyrazine-2-carboxylic acid (5). The structures of the newly synthesized compounds have been elucidated on the basis of spectral (IR, 1H and 13C NMR and MS) and analytical data. Compounds 7a-l have also been screened for their antimicrobial activity. Some of the compounds exhibit promising antimicrobial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gupta, P. Verma and V. Singh, Indian J. Chem., 55B, 362 (2016).
- B.T. Yadav and V. Singh, Indian J. Chem., 52B, 1536 (2013).
- M. Ninomiya, D.R. Garud and M. Koketsu, Coord. Chem. Rev., 255, 2968 (2011); https://doi.org/10.1016/j.ccr.2011.07.009.
- N. Tanahashi and M. Koketsu, Tetrahedron Lett., 52, 4650 (2011); https://doi.org/10.1016/j.tetlet.2011.06.119.
- B. Alcaide, P. Almendros and C. Aragoncillo, Curr. Opin. Drug Discov. Devel., 13, 685 (2010).
- F.W. Lichtenthaler, Acc. Chem. Res., 35, 728 (2002); https://doi.org/10.1021/ar010071i.
- A. Padwa and A.G. Waterson, Curr. Org. Chem., 4, 175 (2000); https://doi.org/10.2174/1385272003376300.
- G. Kirsch, S. Hesse and A. Comel, Curr. Org. Chem., 1, 47 (2004); https://doi.org/10.2174/1570179043485475.
- R.L. Yan, H. Yan, C. Ma, Z.Y. Ren, X.A. Gao, G.S. Huang and Y.M. Liang, J. Org. Chem., 77, 2024 (2012); https://doi.org/10.1021/jo202447p.
- F. Bellina, S. Cauteruccio and R. Rossi, Tetrahedron, 63, 4571 (2007); https://doi.org/10.1016/j.tet.2007.02.075.
- T.H. Altel, R.A. Alqawasmeh and R. Zaarour, Eur. J. Med. Chem., 46, 1874 (2011); https://doi.org/10.1016/j.ejmech.2011.02.051.
- K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak and M. Kandefer Szerszen, Eur. J. Med. Chem., 43, 404 (2008); https://doi.org/10.1016/j.ejmech.2007.03.033.
- C. Trapella, C. Fischetti, M. Pela, I. Lazzari, R. Guerrini, G. Calo, A. Rizzi, V. Camarda, D.G. Lambert, J. Mc Donald, D. Regoli and S. Salvadori, Bioorg. Med. Chem., 17, 5080 (2009); https://doi.org/10.1016/j.bmc.2009.05.068.
- L. De Luca, Curr. Med. Chem., 13, 1 (2006); https://doi.org/10.2174/092986706775197971.
- E. Gürsoy and N.U. Güzeldemirci, Eur. J. Med. Chem., 42, 320 (2007); https://doi.org/10.1016/j.ejmech.2006.10.012.
- A. Elkamhawy, J. Park, A.H.E. Hassan, A.N. Pae, J. Lee, S. Paik, B.-G. Park and E.J. Roh, Eur. J. Med. Chem., 157, 268 (2018); https://doi.org/10.1016/j.ejmech.2018.07.068.
- A. Garzan, M.J. Willby, H.X. Ngo, C.S. Gajadeera, K.D. Green, S.Y.L. Holbrook, C. Hou, J.E. Posey, O.V. Tsodikov and S. Garneau-Tsodikova, ACS Infect. Dis., 3, 302 (2017); https://doi.org/10.1021/acsinfecdis.6b00193.
- J. Kim, M. Park, J. Choi, D.K. Singh, H.J. Kwon, S.H. Kim and I. Kim, Bioorg. Med. Chem. Lett., 29, 1350 (2019); https://doi.org/10.1016/j.bmcl.2019.03.044.
- A. Gueiffier, M. Lhassani, A. Elhakmaoui, R. Snoeck, G. Andrei, O. Chavignon, J.-C. Teulade, A. Kerbal, E.M. Essassi, J.-C. Debouzy, M. Witvrouw, Y. Blache, J. Balzarini, E. De Clercq and J.-P. Chapat, J. Med. Chem., 41, 2856 (1996); https://doi.org/10.1021/jm9507901.
- B. Wallmark, C. Briving, J. Fryklund, K. Munson, R. Jackson, J. Mendlein, E. Rabon and G. Sachs, J. Biol. Chem., 262, 2077 (1987).
- L.C. Meurer, R.L. Tolman, E.W. Chapin, R. Saperstein, P.P. Vicario, M.M. Zrada and M. MacCoss, J. Med. Chem., 35, 3845 (1992); https://doi.org/10.1021/jm00099a012.
- P. Marchand, M.-A. Bazin, F. Pagniez, G. Rivière, L. Bodero, S. Marhadour, M.-R. Nourrisson, C. Picot, S. Ruchaud, S. Bach, B. Baratte, M. Sauvain, D.C. Pareja, A.J. Vaisberg and P. Le Pape, Eur. J. Med. Chem., 103, 381 (2015); https://doi.org/10.1016/j.ejmech.2015.09.002.
- R. Garamvölgyi, J. Dobos, A. Sipos, S. Boros, E. Illyés, F. Baska, L. Kékesi, I. Szabadkai, C. Szántai-Kis, G. Keri and L. Õrfi, Eur. J. Med. Chem., 108, 623 (2016); https://doi.org/10.1016/j.ejmech.2015.12.001.
- G.M. Buckley, T.A. Ceska, J.L. Fraser, L. Gowers, C.R. Groom, A.P. Higueruelo, K. Jenkins, S.R. Mack, T. Morgan, D.M. Parry, W.R. Pitt, O. Rausch, M.D. Richard and V. Sabin, Bioorg. Med. Chem. Lett., 18, 3291 (2008); https://doi.org/10.1016/j.bmcl.2008.04.039.
- K. Zurbonsen, C. Chevillard, D. Vittet, P.A. Bonnet and A. Michel, Fundam. Clin. Pharmacol., 8, 260 (1994).
- N.P. Argade and R.H. Naik, Bioorg. Med. Chem., 4, 881 (1996); https://doi.org/10.1016/0968-0896(96)00076-4.
- S. Myadaraboina, M. Alla, V. Saddanapu, V.R. Bommena and A. Addlagatta, Eur. J. Med. Chem., 45, 5208 (2010); https://doi.org/10.1016/j.ejmech.2010.08.035.
- T. Utsukihara, M. Koshimura, K. Kitsuta, A. Sato and M. Matsushita, Indian J. Chem., 55B, 1495 (2016).
- A.K. Jordao, J. Novais, B. Leal, A.C. Escobar, H.M. dos Santos Junior, Helena C.Castro, Vitor F.Ferreira, Eur. J. Med. Chem., 63, 196 (2013); https://doi.org/10.1016/j.ejmech.2013.01.010.
- V.T. Vasantha, S. Shuddin, S Z. Mohamed, D. Souza, J. Queeny, S. Prasad, K. Pratap and S.R. Venkatesh, Indian J. Chem., 56A, 373 (2017).
- A. Graul and J. Castaner, Drugs Future, 22, 956 (1997); https://doi.org/10.1358/dof.1997.022.09.423212.
- A. Patchett, J. Med. Chem., 36, 2051 (1993); https://doi.org/10.1021/jm00067a001.
- M. de Gasparo and S. Whitebread, Regul. Pept., 59, 303 (1995); https://doi.org/10.1016/0167-0115(95)00085-P.
- V.S. Ananthanarayanan, S. Tetreault and A. Saint-Jean, J. Med. Chem., 36, 1324 (1993); https://doi.org/10.1021/jm00062a004.
- T. Mukaiyama, Angew. Chem. Int. Ed. Engl., 18, 707 (1979); https://doi.org/10.1002/anie.197907073.
- S. Crosignani, J. Gonzalez and D. Swinnen, Org. Lett., 6, 4579 (2004); https://doi.org/10.1021/ol0480372.
- D. Donati, C. Morelli and M. Taddei, Tetrahedron Lett., 46, 2817 (2005); https://doi.org/10.1016/j.tetlet.2005.02.119.
- E. Convers, H. Tye and M. Whittaker, Tetrahedron Lett., 45, 3401 (2004); https://doi.org/10.1016/j.tetlet.2004.03.029.
- D. Donati, C. Morelli, A. Porcheddu and M. Taddei, J. Org. Chem., 69, 9316 (2004); https://doi.org/10.1021/jo048400i.
- C.M. Gordon, Appl. Catal. A Gen., 222, 101 (2001); https://doi.org/10.1016/S0926-860X(01)00834-1.
- K.R. Seddon, J. Chem. Technol. Biotechnol., 68, 351 (1997); https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AIDJCTB613>3.0.CO;2-4.
- T. Welton, Chem. Rev., 99, 2071 (1999); https://doi.org/10.1021/cr980032t.
- H. Zhao, Y. Zhang and Z. Yuan, Aldrichim. Acta, 454, 75 (2002); https://doi.org/10.1016/S0003-2670(01)01543-4.
- N. Jain, A. Kumar, S. Chauhan and S.M.S. Chauhan, Tetrahedron, 61, 1015 (2005); https://doi.org/10.1016/j.tet.2004.10.070.
- Clinical and Laboratory Standards Institute (CLSI), Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, edn 10, M07-A10, Wayne: PA (2015).
- L.E. Margery, Practical Introduction to Microbiology, Spon Ltd.: London, p. 177 (1962).
References
S. Gupta, P. Verma and V. Singh, Indian J. Chem., 55B, 362 (2016).
B.T. Yadav and V. Singh, Indian J. Chem., 52B, 1536 (2013).
M. Ninomiya, D.R. Garud and M. Koketsu, Coord. Chem. Rev., 255, 2968 (2011); https://doi.org/10.1016/j.ccr.2011.07.009.
N. Tanahashi and M. Koketsu, Tetrahedron Lett., 52, 4650 (2011); https://doi.org/10.1016/j.tetlet.2011.06.119.
B. Alcaide, P. Almendros and C. Aragoncillo, Curr. Opin. Drug Discov. Devel., 13, 685 (2010).
F.W. Lichtenthaler, Acc. Chem. Res., 35, 728 (2002); https://doi.org/10.1021/ar010071i.
A. Padwa and A.G. Waterson, Curr. Org. Chem., 4, 175 (2000); https://doi.org/10.2174/1385272003376300.
G. Kirsch, S. Hesse and A. Comel, Curr. Org. Chem., 1, 47 (2004); https://doi.org/10.2174/1570179043485475.
R.L. Yan, H. Yan, C. Ma, Z.Y. Ren, X.A. Gao, G.S. Huang and Y.M. Liang, J. Org. Chem., 77, 2024 (2012); https://doi.org/10.1021/jo202447p.
F. Bellina, S. Cauteruccio and R. Rossi, Tetrahedron, 63, 4571 (2007); https://doi.org/10.1016/j.tet.2007.02.075.
T.H. Altel, R.A. Alqawasmeh and R. Zaarour, Eur. J. Med. Chem., 46, 1874 (2011); https://doi.org/10.1016/j.ejmech.2011.02.051.
K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak and M. Kandefer Szerszen, Eur. J. Med. Chem., 43, 404 (2008); https://doi.org/10.1016/j.ejmech.2007.03.033.
C. Trapella, C. Fischetti, M. Pela, I. Lazzari, R. Guerrini, G. Calo, A. Rizzi, V. Camarda, D.G. Lambert, J. Mc Donald, D. Regoli and S. Salvadori, Bioorg. Med. Chem., 17, 5080 (2009); https://doi.org/10.1016/j.bmc.2009.05.068.
L. De Luca, Curr. Med. Chem., 13, 1 (2006); https://doi.org/10.2174/092986706775197971.
E. Gürsoy and N.U. Güzeldemirci, Eur. J. Med. Chem., 42, 320 (2007); https://doi.org/10.1016/j.ejmech.2006.10.012.
A. Elkamhawy, J. Park, A.H.E. Hassan, A.N. Pae, J. Lee, S. Paik, B.-G. Park and E.J. Roh, Eur. J. Med. Chem., 157, 268 (2018); https://doi.org/10.1016/j.ejmech.2018.07.068.
A. Garzan, M.J. Willby, H.X. Ngo, C.S. Gajadeera, K.D. Green, S.Y.L. Holbrook, C. Hou, J.E. Posey, O.V. Tsodikov and S. Garneau-Tsodikova, ACS Infect. Dis., 3, 302 (2017); https://doi.org/10.1021/acsinfecdis.6b00193.
J. Kim, M. Park, J. Choi, D.K. Singh, H.J. Kwon, S.H. Kim and I. Kim, Bioorg. Med. Chem. Lett., 29, 1350 (2019); https://doi.org/10.1016/j.bmcl.2019.03.044.
A. Gueiffier, M. Lhassani, A. Elhakmaoui, R. Snoeck, G. Andrei, O. Chavignon, J.-C. Teulade, A. Kerbal, E.M. Essassi, J.-C. Debouzy, M. Witvrouw, Y. Blache, J. Balzarini, E. De Clercq and J.-P. Chapat, J. Med. Chem., 41, 2856 (1996); https://doi.org/10.1021/jm9507901.
B. Wallmark, C. Briving, J. Fryklund, K. Munson, R. Jackson, J. Mendlein, E. Rabon and G. Sachs, J. Biol. Chem., 262, 2077 (1987).
L.C. Meurer, R.L. Tolman, E.W. Chapin, R. Saperstein, P.P. Vicario, M.M. Zrada and M. MacCoss, J. Med. Chem., 35, 3845 (1992); https://doi.org/10.1021/jm00099a012.
P. Marchand, M.-A. Bazin, F. Pagniez, G. Rivière, L. Bodero, S. Marhadour, M.-R. Nourrisson, C. Picot, S. Ruchaud, S. Bach, B. Baratte, M. Sauvain, D.C. Pareja, A.J. Vaisberg and P. Le Pape, Eur. J. Med. Chem., 103, 381 (2015); https://doi.org/10.1016/j.ejmech.2015.09.002.
R. Garamvölgyi, J. Dobos, A. Sipos, S. Boros, E. Illyés, F. Baska, L. Kékesi, I. Szabadkai, C. Szántai-Kis, G. Keri and L. Õrfi, Eur. J. Med. Chem., 108, 623 (2016); https://doi.org/10.1016/j.ejmech.2015.12.001.
G.M. Buckley, T.A. Ceska, J.L. Fraser, L. Gowers, C.R. Groom, A.P. Higueruelo, K. Jenkins, S.R. Mack, T. Morgan, D.M. Parry, W.R. Pitt, O. Rausch, M.D. Richard and V. Sabin, Bioorg. Med. Chem. Lett., 18, 3291 (2008); https://doi.org/10.1016/j.bmcl.2008.04.039.
K. Zurbonsen, C. Chevillard, D. Vittet, P.A. Bonnet and A. Michel, Fundam. Clin. Pharmacol., 8, 260 (1994).
N.P. Argade and R.H. Naik, Bioorg. Med. Chem., 4, 881 (1996); https://doi.org/10.1016/0968-0896(96)00076-4.
S. Myadaraboina, M. Alla, V. Saddanapu, V.R. Bommena and A. Addlagatta, Eur. J. Med. Chem., 45, 5208 (2010); https://doi.org/10.1016/j.ejmech.2010.08.035.
T. Utsukihara, M. Koshimura, K. Kitsuta, A. Sato and M. Matsushita, Indian J. Chem., 55B, 1495 (2016).
A.K. Jordao, J. Novais, B. Leal, A.C. Escobar, H.M. dos Santos Junior, Helena C.Castro, Vitor F.Ferreira, Eur. J. Med. Chem., 63, 196 (2013); https://doi.org/10.1016/j.ejmech.2013.01.010.
V.T. Vasantha, S. Shuddin, S Z. Mohamed, D. Souza, J. Queeny, S. Prasad, K. Pratap and S.R. Venkatesh, Indian J. Chem., 56A, 373 (2017).
A. Graul and J. Castaner, Drugs Future, 22, 956 (1997); https://doi.org/10.1358/dof.1997.022.09.423212.
A. Patchett, J. Med. Chem., 36, 2051 (1993); https://doi.org/10.1021/jm00067a001.
M. de Gasparo and S. Whitebread, Regul. Pept., 59, 303 (1995); https://doi.org/10.1016/0167-0115(95)00085-P.
V.S. Ananthanarayanan, S. Tetreault and A. Saint-Jean, J. Med. Chem., 36, 1324 (1993); https://doi.org/10.1021/jm00062a004.
T. Mukaiyama, Angew. Chem. Int. Ed. Engl., 18, 707 (1979); https://doi.org/10.1002/anie.197907073.
S. Crosignani, J. Gonzalez and D. Swinnen, Org. Lett., 6, 4579 (2004); https://doi.org/10.1021/ol0480372.
D. Donati, C. Morelli and M. Taddei, Tetrahedron Lett., 46, 2817 (2005); https://doi.org/10.1016/j.tetlet.2005.02.119.
E. Convers, H. Tye and M. Whittaker, Tetrahedron Lett., 45, 3401 (2004); https://doi.org/10.1016/j.tetlet.2004.03.029.
D. Donati, C. Morelli, A. Porcheddu and M. Taddei, J. Org. Chem., 69, 9316 (2004); https://doi.org/10.1021/jo048400i.
C.M. Gordon, Appl. Catal. A Gen., 222, 101 (2001); https://doi.org/10.1016/S0926-860X(01)00834-1.
K.R. Seddon, J. Chem. Technol. Biotechnol., 68, 351 (1997); https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AIDJCTB613>3.0.CO;2-4.
T. Welton, Chem. Rev., 99, 2071 (1999); https://doi.org/10.1021/cr980032t.
H. Zhao, Y. Zhang and Z. Yuan, Aldrichim. Acta, 454, 75 (2002); https://doi.org/10.1016/S0003-2670(01)01543-4.
N. Jain, A. Kumar, S. Chauhan and S.M.S. Chauhan, Tetrahedron, 61, 1015 (2005); https://doi.org/10.1016/j.tet.2004.10.070.
Clinical and Laboratory Standards Institute (CLSI), Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, edn 10, M07-A10, Wayne: PA (2015).
L.E. Margery, Practical Introduction to Microbiology, Spon Ltd.: London, p. 177 (1962).