Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interactions of Cetyltrimethylammonium Bromide with 1,3-Dioxolane in Water: A Study of Viscosity and Volumetric Properties
Corresponding Author(s) : Rojalin Sahu
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
Densities and viscosities of ternary mixtures containing cetyltrimethyl ammonium bromide (CTAB) in aqueous solution of 1,3-dioxolane have been measured at 5 K intervals from 298.15 to 313.15 K and at atmospheric pressure. The experimental results of viscosity and density have been analyzed by using Jones-Dole equation and Masson equation. The values of constants A and B of Jones-Dole equation have been interpreted in terms of solute-solute and solute-solvent interactions. The standard partial molar volume,Vf0 at infinite dilution were determined from Masson equations. The structure making/breaking capacity of solute is interpreted with the help of Helper equation. The positive value of Helper′s constant (∂2Vf0/∂T2)p and the negative value of dB/dT shows that CTAB in studied organic solvent predominantly acts as a structure-maker.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Khan, M.A. Uddin and M. Mukhtar, J. Chem. Eng. Data, 52, 1548 (2007); https://doi.org/10.1021/je060219e.
- M. Habibullah, K.N. Das, I. Rahman, M.M. Hasegawa, M.A. Uddin and K. Saifuddin, J. Chem. Eng. Data, 55, 5311 (2010); https://doi.org/10.1021/je100390b.
- K. Zhou, Y. Chen, J. Chen, G. Bai and J. Wang, Phys. Chem. Chem. Phys.,13, 14542 (2011); https://doi.org/10.1039/C1CP20948E.
- I. Ramakanth and J. Pištora, RSC Adv., 5, 50306 (2015); https://doi.org/10.1039/C5RA03478G.
- M.S. Khan, A.V. Karatrantos, T. Ohba and Q. Cai, Phys. Chem. Chem. Phys., 21, 22722 (2019); https://doi.org/10.1039/C9CP03332G.
- T. Zamir and A. Khan, J. Pak. Chem. Soc., 27, 130 (2005).
- M.N. Roy, R.K. Das and A. Bhattacharjee, Russ. J. Phys. Chem. A, 84, 2201 (2010); https://doi.org/10.1134/S0036024410130017.
- H.S. Frank and M.W. Evans, J. Chem. Phys., 13, 507 (1945); https://doi.org/10.1063/1.1723985.
- P. Jain, S. Sharma and R.K. Shukla, Phys. Chem. Liq., 51, 547 (2013); https://doi.org/10.1080/00319104.2012.760084.
- K. Sharma, S. Chouhan and R. Singh, J. Chem. Thermodyn., 103, 381 (2016); https://doi.org/10.1016/j.jct.2016.08.032.
- S.K. Shah, S.K. Chatterjee and A. Bhattarai, J. Chem., 2016, Article ID 2176769 (2016); https://doi.org/10.1155/2016/2176769.
- A. Weissberger, Organic solvents, In: Technique of Organic Chemistry, Interscience: N.Y., edn 2, vol. 7 (1955).
- B.B. Nanda, Indian J. Pure Appl. Phys., 54, 471 (2016).
- B.B. Nanda, B. Nanda and P.C. Mohanty, J. Mol. Liq., 171, 50 (2012); https://doi.org/10.1016/j.molliq.2012.03.011.
- B. Jacobson and P.A. Heedman, Acta Chem. Scand., 7, 705 (1953); https://doi.org/10.3891/acta.chem.scand.07-0705.
- J.A. Dean, Lange’s Hand Book of Chemistry, McGraw-Hill Book Company, edn 12 (1979).
- G. Jones and M. Dole, J. Am. Chem. Soc., 51, 2950 (1929); https://doi.org/10.1021/ja01385a012.
- H. Falkenhagen and M. Dole, Phys. Z., 30, 611 (1929).
- H. Falkenhagen and E.L. Vernon, Philos. Mag., 7, 537 (1932); https://doi.org/10.1080/14786443209462095.
- D. Feakins and K. Lawrence, J. Chem. Soc. A, 212 (1966); https://doi.org/10.1039/J19660000212.
- R.H. Stokes and R. Mills, The International Encyclopaedia of Physical Chemistry and Chemical Physics, Pergamon: London, p. 39 (1965).
- M. Huque, I.A. Siddique and M.N. Uddin, J. Chem. Thermodyn., 38, 1474 (2006); https://doi.org/10.1016/j.jct.2006.01.002.
- L.G. Helper, Can. J. Chem., 47, 4613 (1969); https://doi.org/10.1139/v69-762.
- D.O. Masson, Philos. Mag., 8, 218 (1929); https://doi.org/10.1080/14786440808564880.
- H. Shekkaari, S.S. Mousavi and Y. Mansoori, Int. J. Thermophys., 30 499 (2009); https://doi.org/10.1007/s10765-009-0566-6.
- A. Pal and N. Chauhan, J. Mol. Liq., 149, 29 (2009); https://doi.org/10.1007/s10953-010-9620-z.
- H. Shekkaari, Y. Mansoori and R. Sadeghi, J. Chem. Thermodyn., 40, 852 (2008); https://doi.org/10.1016/j.jct.2008.01.003.
- C. Zhao, P. Ma and J. Li, J. Chem. Thermodyn., 37, 37 (2005); https://doi.org/10.1016/j.jct.2004.07.030.
References
R. Khan, M.A. Uddin and M. Mukhtar, J. Chem. Eng. Data, 52, 1548 (2007); https://doi.org/10.1021/je060219e.
M. Habibullah, K.N. Das, I. Rahman, M.M. Hasegawa, M.A. Uddin and K. Saifuddin, J. Chem. Eng. Data, 55, 5311 (2010); https://doi.org/10.1021/je100390b.
K. Zhou, Y. Chen, J. Chen, G. Bai and J. Wang, Phys. Chem. Chem. Phys.,13, 14542 (2011); https://doi.org/10.1039/C1CP20948E.
I. Ramakanth and J. Pištora, RSC Adv., 5, 50306 (2015); https://doi.org/10.1039/C5RA03478G.
M.S. Khan, A.V. Karatrantos, T. Ohba and Q. Cai, Phys. Chem. Chem. Phys., 21, 22722 (2019); https://doi.org/10.1039/C9CP03332G.
T. Zamir and A. Khan, J. Pak. Chem. Soc., 27, 130 (2005).
M.N. Roy, R.K. Das and A. Bhattacharjee, Russ. J. Phys. Chem. A, 84, 2201 (2010); https://doi.org/10.1134/S0036024410130017.
H.S. Frank and M.W. Evans, J. Chem. Phys., 13, 507 (1945); https://doi.org/10.1063/1.1723985.
P. Jain, S. Sharma and R.K. Shukla, Phys. Chem. Liq., 51, 547 (2013); https://doi.org/10.1080/00319104.2012.760084.
K. Sharma, S. Chouhan and R. Singh, J. Chem. Thermodyn., 103, 381 (2016); https://doi.org/10.1016/j.jct.2016.08.032.
S.K. Shah, S.K. Chatterjee and A. Bhattarai, J. Chem., 2016, Article ID 2176769 (2016); https://doi.org/10.1155/2016/2176769.
A. Weissberger, Organic solvents, In: Technique of Organic Chemistry, Interscience: N.Y., edn 2, vol. 7 (1955).
B.B. Nanda, Indian J. Pure Appl. Phys., 54, 471 (2016).
B.B. Nanda, B. Nanda and P.C. Mohanty, J. Mol. Liq., 171, 50 (2012); https://doi.org/10.1016/j.molliq.2012.03.011.
B. Jacobson and P.A. Heedman, Acta Chem. Scand., 7, 705 (1953); https://doi.org/10.3891/acta.chem.scand.07-0705.
J.A. Dean, Lange’s Hand Book of Chemistry, McGraw-Hill Book Company, edn 12 (1979).
G. Jones and M. Dole, J. Am. Chem. Soc., 51, 2950 (1929); https://doi.org/10.1021/ja01385a012.
H. Falkenhagen and M. Dole, Phys. Z., 30, 611 (1929).
H. Falkenhagen and E.L. Vernon, Philos. Mag., 7, 537 (1932); https://doi.org/10.1080/14786443209462095.
D. Feakins and K. Lawrence, J. Chem. Soc. A, 212 (1966); https://doi.org/10.1039/J19660000212.
R.H. Stokes and R. Mills, The International Encyclopaedia of Physical Chemistry and Chemical Physics, Pergamon: London, p. 39 (1965).
M. Huque, I.A. Siddique and M.N. Uddin, J. Chem. Thermodyn., 38, 1474 (2006); https://doi.org/10.1016/j.jct.2006.01.002.
L.G. Helper, Can. J. Chem., 47, 4613 (1969); https://doi.org/10.1139/v69-762.
D.O. Masson, Philos. Mag., 8, 218 (1929); https://doi.org/10.1080/14786440808564880.
H. Shekkaari, S.S. Mousavi and Y. Mansoori, Int. J. Thermophys., 30 499 (2009); https://doi.org/10.1007/s10765-009-0566-6.
A. Pal and N. Chauhan, J. Mol. Liq., 149, 29 (2009); https://doi.org/10.1007/s10953-010-9620-z.
H. Shekkaari, Y. Mansoori and R. Sadeghi, J. Chem. Thermodyn., 40, 852 (2008); https://doi.org/10.1016/j.jct.2008.01.003.
C. Zhao, P. Ma and J. Li, J. Chem. Thermodyn., 37, 37 (2005); https://doi.org/10.1016/j.jct.2004.07.030.