Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
An Electrochemical Sensor based on Electrodeposited CTAB Film on Glassy Carbon Electrode for Detection of Morphine
Corresponding Author(s) : Pinky Abraham
Asian Journal of Chemistry,
Vol. 32 No. 1 (2020): Vol 32 Issue 1
Abstract
A simple, effective and rapid method for the electrochemical detection of morphine is described based on glassy carbon modified electrode with poly(CTAB). In this work, poly(CTAB) thin film was generated through elecropolymerization of the surfactant CTAB. The formation of nanoporous thin film of poly(CTAB) was confirmed by field emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) and Fourier transform infrared spectroscopy (FTIR). The electrochemical behavior of morphine is explained in terms of the anodic oxidation of its tertiary amino group. The limit of detection was calculated as 0.2 μM with a good regression between concentration and peak current of morphine by using differential pulse voltammetry within the range of 50 nM to 20 μM. The poly(CTAB)/GCE based sensor shows excellent electrochemical performance for the detection of morphine and this sensing platform can be effective for the detection of similar molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Dehdashtian, M.B. Gholivand, M. Shamsipur and S. Kariminia, Mater. Sci. Eng. C Mater. Biol. Appl., 58, 53 (2016); https://doi.org/10.1016/j.msec.2015.07.049.
- M.E. Soares, V. Seabra and M.D.A. Bastos, J. Liq. Chromatogr., 15, 1533 (1992); https://doi.org/10.1080/10826079208018306.
- F. Tagliaro, D. Franchi, R. Dorizzi and M. Marigo, J. Chromatogr. A, 488, 215 (1989); https://doi.org/10.1016/S0378-4347(00)82947-3.
- R. Dams, T. Benijts, W.E. Lambert and A.P. De Leenheer, J. Chromatogr. A, 773, 53 (2002); https://doi.org/10.1016/S1570-0232(01)00594-3.
- G. Sakai, K. Ogata, T. Uda, N. Miura and N. Yamazoe, Sens. Actuators B Chem., 49, 5 (1998); https://doi.org/10.1016/S0925-4005(98)00107-5.
- F. Xu, M. Gao, L. Wang, T. Zhou, T. Jin and J. Jin, Talanta, 58, 427 (2002); https://doi.org/10.1016/S0039-9140(02)00312-0.
- J.M.P.J. Garrido, C. Delerue-Matos, F. Borges, T.R.A. Macedo and A.M. Oliveira-Brett, Electroanalysis, 16, 1427 (2004); https://doi.org/10.1002/elan.200302967.
- N.F. Atta, A. Galal and S.M. Azab, Int. J. Electrochem. Sci., 6, 5066 (2011).
- F. Li, J. Song, C. Shan, D. Gao, X. Xu and L. Niu, Biosens. Bioelectron., 25, 1408 (2010); https://doi.org/10.1016/j.bios.2009.10.037.
- S. Eissa and S.M. Zourob, Microchim. Acta, 184, 2281 (2017); https://doi.org/10.1007/s00604-017-2261-9.
- M.H. Pournaghi-Azar and A. Saadatirad, J. Solid State Electrochem., 13, 1233 (2009); https://doi.org/10.1007/s10008-008-0644-x.
- A. Babaei, M. Babazadeh and H.R. Momeni, Int. J. Electrochem. Sci., 6, 1382 (2011).
- A. Navaee, A. Salimi and H. Teymourian, Biosens. Bioelectron., 31, 205 (2012); https://doi.org/10.1016/j.bios.2011.10.018.
- A.A. Ensafi, B. Rezaei and H. Krimi-Maleh, Ionics, 17, 659 (2011); https://doi.org/10.1007/s11581-011-0562-2.
- N.F. Atta, A. Galal and R.A. Ahmed, Electroanalysis, 23, 737 (2011); https://doi.org/10.1002/elan.201000600.
- B.D. Malhotra, A. Chaubey and S.P. Singh, Anal. Chim. Acta, 578, 59 (2006); https://doi.org/10.1016/j.aca.2006.04.055.
- L.A. Terry, S.F. White and L.J. Tigwell, J. Agric. Food Chem., 53, 1309 (2005); https://doi.org/10.1021/jf040319t.
- Y.J. Yang, L. Guo and W. Zhang, J. Electroanal. Chem., 768, 102 (2016); https://doi.org/10.1016/j.jelechem.2016.02.043.
- Y.J. Yang, C. Yao and W. Li, J. Electroanal. Chem., 799, 386 (2017); https://doi.org/10.1016/j.jelechem.2017.06.027.
- Z. Tasic, V.K. Gupta and M.M. Antonijevic, Int. J. Electrochem. Sci., 9, 3473 (2014).
- A.A. Ensafi, M.M. Abarghoui and B. Rezaei, Sens. Actuators B Chem., 219, 1 (2015); https://doi.org/10.1016/j.snb.2015.05.010.
- J. Volke and F. Liska, Text on Electrochemistry in Organic Synthesis, Springer-Verlag, Heidelberg (1994).
- A. Shrivastava and V.B. Gupta, Chron. Young. Sci., 2, 21 (2011); https://doi.org/10.4103/2229-5186.79345.
- N.F. Atta, A. Galal, A.A. Wassel and A.H. Ibrahim, Int. J. Electrochem. Sci., 7, 10501 (2012).
- G. Macaferri, F. Terzi, Z. Xia, F. Vulcano, A. Liscio, V. Palermo and C. Zanardi, Sens. Actuators B Chem., 281, 739 (2018); https://doi.org/10.1016/j.snb.2018.10.163.
- A. Aliabadi and G.H. Rounaghi, J. Electroanal. Chem., 382, 204 (2018); https://doi.org/10.1016/j.jelechem.2018.10.052.
References
S. Dehdashtian, M.B. Gholivand, M. Shamsipur and S. Kariminia, Mater. Sci. Eng. C Mater. Biol. Appl., 58, 53 (2016); https://doi.org/10.1016/j.msec.2015.07.049.
M.E. Soares, V. Seabra and M.D.A. Bastos, J. Liq. Chromatogr., 15, 1533 (1992); https://doi.org/10.1080/10826079208018306.
F. Tagliaro, D. Franchi, R. Dorizzi and M. Marigo, J. Chromatogr. A, 488, 215 (1989); https://doi.org/10.1016/S0378-4347(00)82947-3.
R. Dams, T. Benijts, W.E. Lambert and A.P. De Leenheer, J. Chromatogr. A, 773, 53 (2002); https://doi.org/10.1016/S1570-0232(01)00594-3.
G. Sakai, K. Ogata, T. Uda, N. Miura and N. Yamazoe, Sens. Actuators B Chem., 49, 5 (1998); https://doi.org/10.1016/S0925-4005(98)00107-5.
F. Xu, M. Gao, L. Wang, T. Zhou, T. Jin and J. Jin, Talanta, 58, 427 (2002); https://doi.org/10.1016/S0039-9140(02)00312-0.
J.M.P.J. Garrido, C. Delerue-Matos, F. Borges, T.R.A. Macedo and A.M. Oliveira-Brett, Electroanalysis, 16, 1427 (2004); https://doi.org/10.1002/elan.200302967.
N.F. Atta, A. Galal and S.M. Azab, Int. J. Electrochem. Sci., 6, 5066 (2011).
F. Li, J. Song, C. Shan, D. Gao, X. Xu and L. Niu, Biosens. Bioelectron., 25, 1408 (2010); https://doi.org/10.1016/j.bios.2009.10.037.
S. Eissa and S.M. Zourob, Microchim. Acta, 184, 2281 (2017); https://doi.org/10.1007/s00604-017-2261-9.
M.H. Pournaghi-Azar and A. Saadatirad, J. Solid State Electrochem., 13, 1233 (2009); https://doi.org/10.1007/s10008-008-0644-x.
A. Babaei, M. Babazadeh and H.R. Momeni, Int. J. Electrochem. Sci., 6, 1382 (2011).
A. Navaee, A. Salimi and H. Teymourian, Biosens. Bioelectron., 31, 205 (2012); https://doi.org/10.1016/j.bios.2011.10.018.
A.A. Ensafi, B. Rezaei and H. Krimi-Maleh, Ionics, 17, 659 (2011); https://doi.org/10.1007/s11581-011-0562-2.
N.F. Atta, A. Galal and R.A. Ahmed, Electroanalysis, 23, 737 (2011); https://doi.org/10.1002/elan.201000600.
B.D. Malhotra, A. Chaubey and S.P. Singh, Anal. Chim. Acta, 578, 59 (2006); https://doi.org/10.1016/j.aca.2006.04.055.
L.A. Terry, S.F. White and L.J. Tigwell, J. Agric. Food Chem., 53, 1309 (2005); https://doi.org/10.1021/jf040319t.
Y.J. Yang, L. Guo and W. Zhang, J. Electroanal. Chem., 768, 102 (2016); https://doi.org/10.1016/j.jelechem.2016.02.043.
Y.J. Yang, C. Yao and W. Li, J. Electroanal. Chem., 799, 386 (2017); https://doi.org/10.1016/j.jelechem.2017.06.027.
Z. Tasic, V.K. Gupta and M.M. Antonijevic, Int. J. Electrochem. Sci., 9, 3473 (2014).
A.A. Ensafi, M.M. Abarghoui and B. Rezaei, Sens. Actuators B Chem., 219, 1 (2015); https://doi.org/10.1016/j.snb.2015.05.010.
J. Volke and F. Liska, Text on Electrochemistry in Organic Synthesis, Springer-Verlag, Heidelberg (1994).
A. Shrivastava and V.B. Gupta, Chron. Young. Sci., 2, 21 (2011); https://doi.org/10.4103/2229-5186.79345.
N.F. Atta, A. Galal, A.A. Wassel and A.H. Ibrahim, Int. J. Electrochem. Sci., 7, 10501 (2012).
G. Macaferri, F. Terzi, Z. Xia, F. Vulcano, A. Liscio, V. Palermo and C. Zanardi, Sens. Actuators B Chem., 281, 739 (2018); https://doi.org/10.1016/j.snb.2018.10.163.
A. Aliabadi and G.H. Rounaghi, J. Electroanal. Chem., 382, 204 (2018); https://doi.org/10.1016/j.jelechem.2018.10.052.