This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Sustainable Synthesis, Characterization, Antimicrobial Evaluation and in silico ADMET Prediction of New Functionalized Imidazolium Based Ionic Liquids
Corresponding Author(s) : Anas R. Al Johani
Asian Journal of Chemistry,
Vol. 32 No. 8 (2020): Vol 32 Issue 8, 2020
Abstract
A series of sixteen new ionic liquids (ILs) bearing imidazolium moiety were designed and synthesized under sustainable and green conditions which were confirmed by analytical and spectral techniques using 1H- & 13C-NMR, FT-IR, mass and elemental analysis. A panel of clinically isolated strains was used for in vitro inhibitory antimicrobial activities screening of synthesized ionic liquids. The results of antimicrobial assay showed that some of synthesized ionic liquids showed moderate to good activity. Among these ILs, ionic liquids 3, 4 and 5 (bearing alkyl chain with a phenyl group) significantly inhibited cell growth of strains. In this regard, these ionic liquids considered as promising antibacterial agents when compared with standard antibiotics. By encouraging in vitro antimicrobial screening, in silico ADMET evaluation has been performed and found excellent pharmacokinetic, bioavailability and toxicity profiles. Synthesized ionic liquids has found to be safe and non-toxic according to calculated in vivo computed LD50 values (2.49-2.80 mg/kg) for rat acute toxicity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Roholm, J. Ind. Hyg. Toxicol., 19, 126 (1937).
- M. Luna, ed.: B.C. Campbell, The Environment Since 1945 (2012).
- M.L. Bell, D.L. Davis and T. Fletcher, Environ. Health Perspect., 112, 6 (2004); https://doi.org/10.1289/ehp.6539
- J.H. Clark, R. Luque and A.S. Matharu, Annu. Rev. Chem. Biomol. Eng., 3, 183 (2012); https://doi.org/10.1146/annurev-chembioeng-062011-081014
- E.J. Woodhouse and S. Breyman, Sci. Technol. Human Values, 30, 199 (2005); https://doi.org/10.1177/0162243904271726
- J.A. Linthorst, Found. Chem., 12, 55 (2010); https://doi.org/10.1007/s10698-009-9079-4
- P. Anastas and N. Eghbali, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B
- B. Keays, Sobriety Monitoring System, US Patent 9239323B2 (2016).
- J.A. Kraut and M.E. Mullins, N. Engl. J. Med., 378, 270 (2018); https://doi.org/10.1056/NEJMra1615295
- T. Hung, C.R. Dewitt, W. Martz, W. Schreiber and D.T. Holmes, Clin. Toxicol., 48, 569 (2010); https://doi.org/10.3109/15563650.2010.492350
- I. Lundberg, A. Gustavsson, M. Hogberg and G. Nise, Occup. Environ. Med., 49, 409 (1992); https://doi.org/10.1136/oem.49.6.409
- C. Raitta, K. Husman and A. Tossavainen, Albrecht von Graefes Arch. Klin. Ophthalmol., 200, 149 (1976); https://doi.org/10.1007/BF00414364
- M. Freemantle, An Introduction to Ionic Liquids, Royal Society of Chemistry: Cambridge (2009).
- G.W. Driver, ChemPhysChem, 16, 2432 (2015); https://doi.org/10.1002/cphc.201500148
- D.R. McFarlane, J. Sun, J. Golding, P. Meakin and M. Forsyth, Electrochim. Acta, 45, 1271 (2000); https://doi.org/10.1016/S0013-4686(99)00331-X
- R.E. Del Sesto, C. Corley, A. Robertson and J.S. Wilkes, J. Org. Chem., 690, 2536 (2005); https://doi.org/10.1016/j.jorganchem.2004.09.060
- C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki and J.F. Brennecke, J. Chem. Eng. Data, 49, 954 (2004); https://doi.org/10.1021/je034261a
- M.C. Buzzeo, R.G. Evans and R.G. Compton, ChemPhysChem, 5, 1106 (2004); https://doi.org/10.1002/cphc.200301017
- K.M. Docherty and C.F. Kulpa Jr., Green Chem., 7, 185 (2005); https://doi.org/10.1039/b419172b
- K.M. Docherty, J.K. Dixon and C.F. Kulpa Jr., Biodegradation, 18, 481 (2007); https://doi.org/10.1007/s10532-006-9081-7
- S. Stolte, M. Matzke, J. Arning, A. Böschen, W.-R. Pitner, U. Welz-Biermann, B. Jastorff and J. Ranke, Green Chem., 9, 1170 (2007); https://doi.org/10.1039/b711119c
- L. Carson, P.K.W. Chau, M.J. Earle, M.A. Gilea, B.F. Gilmore, S.P. Gorman, M.T. McCann and K.R. Seddon, Green Chem., 11, 492 (2009); https://doi.org/10.1039/b821842k
- I. Krossing, J.M. Slattery, C. Daguenet, P.J. Dyson, A. Oleinikova and H. Weingärtner, J. Am. Chem. Soc., 128, 13427 (2006); https://doi.org/10.1021/ja0619612
- C. Daguenet, P.J. Dyson, I. Krossing, A. Oleinikova, J. Slattery, C. Wakai and H. Weingärtner, J. Phys. Chem. B, 110, 12682 (2006); https://doi.org/10.1021/jp0604903
- P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed. Engl., 39, 3772 (2000);https://doi.org/10.1002/1521-3773(20001103)39:21<3772::aid-anie3772>3.0.co;2-5
- The European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 8.0 (2018).
- Clinical and Laboratory Standards Institute (CLSI), Document M26-A, Methods of Determining Bactericidal Activity of Antimicrobial Agents for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Guideline, Wayne: USA (1999).
- H. Nomura, Y. Isshiki, K. Sakuda, K. Sakuma and S. Kondo, Biol. Pharm. Bull., 35, 1560 (2012); https://doi.org/10.1248/bpb.b12-00452
- Clinical and Laboratory Standards Institute (CLSI), Document M7-A5, Methods for Antibacterial Susceptibility Test for Bacteria that Grow Aerobically, Approved standard, edn 5, Wayne: USA (2000).
- M. Messali, M.R. Aouad, A.A.-S. Ali, N. Rezki, T. Ben Hadda and B. Hammouti, Med. Chem. Res., 24, 1387 (2015); https://doi.org/10.1007/s00044-014-1211-x
- A. Albalawi, W. El-Sayed, A. Aljuhani, S. Almutairi, N. Rezki, M. Aouad and M. Messali, Molecules, 23, 1727 (2018); https://doi.org/10.3390/molecules23071727
- A. Aljuhani, W.S. El-Sayed, P.K. Sahu, N. Rezki, M.R. Aouad, R. Salghi and M. Messali, J. Mol. Liq., 249, 747 (2018); https://doi.org/10.1016/j.molliq.2017.11.108
- J. Davies and D. Davies, Microbiol. Mol. Biol. Rev., 74, 417 (2010);https://doi.org/10.1128/MMBR.00016-10
- R. Laxminarayan, A. Duse, C. Wattal, A.K. Zaidi, H.F. Wertheim, N. Sumpradit, E. Vlieghe, G.L. Hara, I.M. Gould, H. Goossens, C. Greko, A.D. So, M. Bigdeli, G. Tomson, W. Woodhouse, E. Ombaka, A.Q. Peralta, F.N. Qamar, F. Mir, S. Kariuki, Z.A. Bhutta, R. Bergstrom, A. Coates, G.D. Wright, E.D. Brown and O. Cars, Lancet Infect Dis., 13, 1057 (2013);https://doi.org/10.1016/S1473-3099(13)70318-9
- A.H. Holmes, L.S.P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, P.J. Guerin and L.J.V. Piddock, Lancet, 387, 176 (2016);https://doi.org/10.1016/S0140-6736(15)00473-0
- K. Sieniawski, K. Kaczka, M. Rucinska, L. Gagis and L. Pomorski, Pol. Przegl. Chir., 85, 483 (2013); https://doi.org/10.2478/pjs-2013-0075
- M. Vading, P. Naucler, M. Kalin and C.G. Giske, PLoS One, 13, e0195258 (2018); https://doi.org/10.1371/journal.pone.0195258
- A.Y. Peleg and D.C. Hooper, N. Engl. J. Med., 362, 1804 (2010); https://doi.org/10.1056/NEJMra0904124
- H.F. Chambers and F.R. DeLeo, Nat. Rev. Microbiol., 7, 629 (2009); https://doi.org/10.1038/nrmicro2200
- T.J. Foster, FEMS Microbiol. Rev., 41, 430 (2017);https://doi.org/10.1093/femsre/fux007
- M. Messali, Molecules, 20, 14936 (2015); https://doi.org/10.3390/molecules200814936
- G. Vistoli, A. Pedretti, B. Testa, Drug Discov. Today, 13, 285 (2008);https://doi.org/10.1016/j.drudis.2007.11.007
- A.K. Ghose, V.N. Viswanadhan and J.J. Wendoloski, J. Comb. Chem., 1, 55 (1999); https://doi.org/10.1021/cc9800071
- S. Singh and J. Singh, Med. Res. Rev., 13, 569 (1993); https://doi.org/10.1002/med.2610130504
- A. Verma, Asian Pac. J. Trop. Med., 2, S1735 (2012); https://doi.org/10.1016/S2221-1691(12)60486-9
References
K. Roholm, J. Ind. Hyg. Toxicol., 19, 126 (1937).
M. Luna, ed.: B.C. Campbell, The Environment Since 1945 (2012).
M.L. Bell, D.L. Davis and T. Fletcher, Environ. Health Perspect., 112, 6 (2004); https://doi.org/10.1289/ehp.6539
J.H. Clark, R. Luque and A.S. Matharu, Annu. Rev. Chem. Biomol. Eng., 3, 183 (2012); https://doi.org/10.1146/annurev-chembioeng-062011-081014
E.J. Woodhouse and S. Breyman, Sci. Technol. Human Values, 30, 199 (2005); https://doi.org/10.1177/0162243904271726
J.A. Linthorst, Found. Chem., 12, 55 (2010); https://doi.org/10.1007/s10698-009-9079-4
P. Anastas and N. Eghbali, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B
B. Keays, Sobriety Monitoring System, US Patent 9239323B2 (2016).
J.A. Kraut and M.E. Mullins, N. Engl. J. Med., 378, 270 (2018); https://doi.org/10.1056/NEJMra1615295
T. Hung, C.R. Dewitt, W. Martz, W. Schreiber and D.T. Holmes, Clin. Toxicol., 48, 569 (2010); https://doi.org/10.3109/15563650.2010.492350
I. Lundberg, A. Gustavsson, M. Hogberg and G. Nise, Occup. Environ. Med., 49, 409 (1992); https://doi.org/10.1136/oem.49.6.409
C. Raitta, K. Husman and A. Tossavainen, Albrecht von Graefes Arch. Klin. Ophthalmol., 200, 149 (1976); https://doi.org/10.1007/BF00414364
M. Freemantle, An Introduction to Ionic Liquids, Royal Society of Chemistry: Cambridge (2009).
G.W. Driver, ChemPhysChem, 16, 2432 (2015); https://doi.org/10.1002/cphc.201500148
D.R. McFarlane, J. Sun, J. Golding, P. Meakin and M. Forsyth, Electrochim. Acta, 45, 1271 (2000); https://doi.org/10.1016/S0013-4686(99)00331-X
R.E. Del Sesto, C. Corley, A. Robertson and J.S. Wilkes, J. Org. Chem., 690, 2536 (2005); https://doi.org/10.1016/j.jorganchem.2004.09.060
C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki and J.F. Brennecke, J. Chem. Eng. Data, 49, 954 (2004); https://doi.org/10.1021/je034261a
M.C. Buzzeo, R.G. Evans and R.G. Compton, ChemPhysChem, 5, 1106 (2004); https://doi.org/10.1002/cphc.200301017
K.M. Docherty and C.F. Kulpa Jr., Green Chem., 7, 185 (2005); https://doi.org/10.1039/b419172b
K.M. Docherty, J.K. Dixon and C.F. Kulpa Jr., Biodegradation, 18, 481 (2007); https://doi.org/10.1007/s10532-006-9081-7
S. Stolte, M. Matzke, J. Arning, A. Böschen, W.-R. Pitner, U. Welz-Biermann, B. Jastorff and J. Ranke, Green Chem., 9, 1170 (2007); https://doi.org/10.1039/b711119c
L. Carson, P.K.W. Chau, M.J. Earle, M.A. Gilea, B.F. Gilmore, S.P. Gorman, M.T. McCann and K.R. Seddon, Green Chem., 11, 492 (2009); https://doi.org/10.1039/b821842k
I. Krossing, J.M. Slattery, C. Daguenet, P.J. Dyson, A. Oleinikova and H. Weingärtner, J. Am. Chem. Soc., 128, 13427 (2006); https://doi.org/10.1021/ja0619612
C. Daguenet, P.J. Dyson, I. Krossing, A. Oleinikova, J. Slattery, C. Wakai and H. Weingärtner, J. Phys. Chem. B, 110, 12682 (2006); https://doi.org/10.1021/jp0604903
P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed. Engl., 39, 3772 (2000);https://doi.org/10.1002/1521-3773(20001103)39:21<3772::aid-anie3772>3.0.co;2-5
The European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 8.0 (2018).
Clinical and Laboratory Standards Institute (CLSI), Document M26-A, Methods of Determining Bactericidal Activity of Antimicrobial Agents for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Guideline, Wayne: USA (1999).
H. Nomura, Y. Isshiki, K. Sakuda, K. Sakuma and S. Kondo, Biol. Pharm. Bull., 35, 1560 (2012); https://doi.org/10.1248/bpb.b12-00452
Clinical and Laboratory Standards Institute (CLSI), Document M7-A5, Methods for Antibacterial Susceptibility Test for Bacteria that Grow Aerobically, Approved standard, edn 5, Wayne: USA (2000).
M. Messali, M.R. Aouad, A.A.-S. Ali, N. Rezki, T. Ben Hadda and B. Hammouti, Med. Chem. Res., 24, 1387 (2015); https://doi.org/10.1007/s00044-014-1211-x
A. Albalawi, W. El-Sayed, A. Aljuhani, S. Almutairi, N. Rezki, M. Aouad and M. Messali, Molecules, 23, 1727 (2018); https://doi.org/10.3390/molecules23071727
A. Aljuhani, W.S. El-Sayed, P.K. Sahu, N. Rezki, M.R. Aouad, R. Salghi and M. Messali, J. Mol. Liq., 249, 747 (2018); https://doi.org/10.1016/j.molliq.2017.11.108
J. Davies and D. Davies, Microbiol. Mol. Biol. Rev., 74, 417 (2010);https://doi.org/10.1128/MMBR.00016-10
R. Laxminarayan, A. Duse, C. Wattal, A.K. Zaidi, H.F. Wertheim, N. Sumpradit, E. Vlieghe, G.L. Hara, I.M. Gould, H. Goossens, C. Greko, A.D. So, M. Bigdeli, G. Tomson, W. Woodhouse, E. Ombaka, A.Q. Peralta, F.N. Qamar, F. Mir, S. Kariuki, Z.A. Bhutta, R. Bergstrom, A. Coates, G.D. Wright, E.D. Brown and O. Cars, Lancet Infect Dis., 13, 1057 (2013);https://doi.org/10.1016/S1473-3099(13)70318-9
A.H. Holmes, L.S.P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, P.J. Guerin and L.J.V. Piddock, Lancet, 387, 176 (2016);https://doi.org/10.1016/S0140-6736(15)00473-0
K. Sieniawski, K. Kaczka, M. Rucinska, L. Gagis and L. Pomorski, Pol. Przegl. Chir., 85, 483 (2013); https://doi.org/10.2478/pjs-2013-0075
M. Vading, P. Naucler, M. Kalin and C.G. Giske, PLoS One, 13, e0195258 (2018); https://doi.org/10.1371/journal.pone.0195258
A.Y. Peleg and D.C. Hooper, N. Engl. J. Med., 362, 1804 (2010); https://doi.org/10.1056/NEJMra0904124
H.F. Chambers and F.R. DeLeo, Nat. Rev. Microbiol., 7, 629 (2009); https://doi.org/10.1038/nrmicro2200
T.J. Foster, FEMS Microbiol. Rev., 41, 430 (2017);https://doi.org/10.1093/femsre/fux007
M. Messali, Molecules, 20, 14936 (2015); https://doi.org/10.3390/molecules200814936
G. Vistoli, A. Pedretti, B. Testa, Drug Discov. Today, 13, 285 (2008);https://doi.org/10.1016/j.drudis.2007.11.007
A.K. Ghose, V.N. Viswanadhan and J.J. Wendoloski, J. Comb. Chem., 1, 55 (1999); https://doi.org/10.1021/cc9800071
S. Singh and J. Singh, Med. Res. Rev., 13, 569 (1993); https://doi.org/10.1002/med.2610130504
A. Verma, Asian Pac. J. Trop. Med., 2, S1735 (2012); https://doi.org/10.1016/S2221-1691(12)60486-9