This work is licensed under a Creative Commons Attribution 4.0 International License.
Schiff Base Anchored with Silver Nanoparticles as Effective Adsorbent for Removal of Cadmium(II) Heavy Metal from Industrial Wastewater
Corresponding Author(s) : Vedula Uma
Asian Journal of Chemistry,
Vol. 32 No. 8 (2020): Vol 32 Issue 8, 2020
Abstract
The current study deals with the examination of the capacity of Schiff base anchored with silver nanoparticles for removal of cadmium(II) ions from industrial wastewater. Schiff base was synthesized using refluxing of salicylaldehyde and 4-aminoantipyrine in alcoholic medium. The characterization of Schiff base were studied by elemental analysis, FTIR, NMR, UV-visible and mass spectral studies. The silver nanoparticles were synthesized using the chemical reduction method and characterized. Then, silver nanoparticles anchored to the Schiff base by suitable method and again characterized. Peanut shells were used as solid phase for removal of Cd(II) ions. The effects of several parameters to optimize the adsorption of Cd(II) ions on solid phase, including pH, contact time, initial metal ion concentration and adsorbent weight were investigated. The maximum removal efficiency of Cd(II) ions on solid phase using Ag nano@Schiff base was achieved under experimental conditions of pH 6 (% removal = 81%), contact time of 15 min (% removal = 93%), initial metal ion concentration of 0.5 ppm (% removal = 95%) and adsorbent weight of 3 mg (% removal = 89%). The results showed that extraction of Cd2+ on AgNPs@Schiff base follows Freundlich adsorption isotherm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
1.R. Berni, M. Luyckx, X. Xu, S. Legay, K. Sergeant, J.-F. Hausman, s. Lutts, G. Cai and G. Guerriero, Environ. Exp. Bot., 161, 98 (2018);https://doi.org/10.1016/j.envexpbot.2018.10.017
2.B.A. Lajayer, M. Ghorbanpour and S. Nikabadi, Ecotoxicol. Environ. Saf., 145, 377 (2017); https://doi.org/10.1016/j.ecoenv.2017.07.035
3.R.R. Pawar, Lalhmunsiama, M. Kim, J.-G. Kim, S.-M. Hong, S.Y. Sawant and S.M. Lee, Appl. Clay Sci., 162, 339 (2018); https://doi.org/10.1016/j.clay.2018.06.014
4.F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
5.S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu and J. Zhou, Chem. Eng. J., 226, 30 (2013); https://doi.org/10.1016/j.cej.2013.04.060
6.C. Cheng, J. Wang, X. Yang, A. Li and C. Philippe, J. Hazard. Mater., 264, 332 (2014); https://doi.org/10.1016/j.jhazmat.2013.11.028
7.Q. Wang, H.J. Qian, Y.P. Yang, Z. Zhang, C. Naman and X.H. Xu, J. Contam. Hydrol., 114, 35 (2010); https://doi.org/10.1016/j.jconhyd.2010.02.006
8.N. Mahlooji, M. Behzad, H. Amiri Rudbari, G. Bruno and B. Ghanbari, Inorg. Chim. Acta, 445, 124 (2016); https://doi.org/10.1016/j.ica.2016.02.040
9.E.L. Chang, C. Simmers and D.A. Knight, Pharmaceuticals, 3, 1711 (2010); https://doi.org/10.3390/ph3061711
10.M.M. Abd-Elzaher, A.A. Labib, H.A. Mousa, S.A. Moustafa, M.M. Ali and A.A. El-Rashedy, Beni-Suef Univ. J. Appl. Sci., 5, 85 (2016);https://doi.org/10.1016/j.bjbas.2016.01.001
11.J.F. Adediji, E.T. Olayinka, M.A. Adebayo and O. Babatunde, Int. J. Phys. Sci., 4, 529 (2009).
12.S.A. Patil, C.T. Prabhakara, B.M. Halasangi, S.S. Toragalmath and P.S. Badami, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 641 (2015); https://doi.org/10.1016/j.saa.2014.08.028
13.L. Jia, J. Xu, X. Zhao, Sh. Shen, T. Zhou, Zh. Xu, T. Zhu, R. Chen, T. Ma, J. Xie, K. Dong and J. Huang, J. Inorg. Biochem., 159, 107 (2016);https://doi.org/10.1016/j.jinorgbio.2016.02.033
14.M. Rajabi, S. Asemipour, B. Barfi, M.R. Jamali and M. Behzad, J. Mol. Liq., 194, 166 (2014); https://doi.org/10.1016/j.molliq.2014.01.026
15.A. Asghari, M. Ghazaghi, M. Rajabi, M. Behzad and M. Ghaedi, J. Serb. Chem. Soc., 79, 63 (2014); https://doi.org/10.2298/JSC062212081A
16.V. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, A. Makhlouf, M. Goodarzi and A. Garshasbi, Crit. Rev. Environ. Sci. Technol., 46, 93 (2016); https://doi.org/10.1080/10643389.2015.1061874
17.H. Sadegh, R.S. Ghoshekandi, A. Masjedi, Z. Mahmoodi and M. Kazemi, Int. J. Nano Dimens., 7, 109 (2016).
18.J. Theron, J. Walker and T. Cloete, Crit. Rev. Microbiol., 34, 43 (2008); https://doi.org/10.1080/10408410701710442
19.E.A. Dil, M. Ghaedi and A. Asfaram, Ultrason. Sonochem., 34, 792 (2017); https://doi.org/10.1016/j.ultsonch.2016.07.015
20.M. Machida, T. Mochimaru and H. Tatsumoto, Carbon, 44, 2681 (2006); https://doi.org/10.1016/j.carbon.2006.04.003
21.Y. Sharma, V. Srivastava, V. Singh, S. Kaul and C. Weng, Environ. Technol., 30, 583 (2009); https://doi.org/10.1080/09593330902838080
22.I. Ali, Chem. Rev., 112, 5073 (2012); https://doi.org/10.1021/cr300133d
23.J. Lee, S. Mahendra and P.J.J. Alvarez, ACS Nano, 4, 3580 (2010); https://doi.org/10.1021/nn100866w
24.C. Chen and X. Wang, Ind. Eng. Chem. Fundam., 45, 9144 (2006); https://doi.org/10.1021/ie060791z
25.S. Wang, H. Sun, H.-M. Ang and M. Tade´, Chem. Eng. J., 226, 336 (2013); https://doi.org/10.1016/j.cej.2013.04.070
26.T. Luo, J. Cui, S. Hu, Y. Huang and C. Jing, Environ. Sci. Technol., 44, 9094 (2010); https://doi.org/10.1021/es1024355
27.S. Singh, K. Barick and D. Bahadur, Nanomater. Nanotechnol., 3, 20 (2013); https://doi.org/10.5772/57237
28.J. Feng, D.-D. Zhang, Y.-F. Liu, Y. Bai, Q.-D. Chen, S.-Y. Liu and H.-B. Sun, J. Phys. Chem. C, 114, 6718 (2010); https://doi.org/10.1021/jp9122503
29.S. Singh, K. Barick and D. Bahadur, Int. J. Nanosci., 10, 1001 (2011); https://doi.org/10.1142/S0219581X11008654
30.Y. Shen, J. Tang, Z. Nie, Y. Wang, Y. Ren and L. Zuo, Sep. Purif. Technol., 68, 312 (2009); https://doi.org/10.1016/j.seppur.2009.05.020
31.L. Wang, J. Li, Q. Jiang and L. Zhao, Dalton Trans., 41, 4544 (2012); https://doi.org/10.1039/c2dt11827k
32.M. Tuzen and M. Soylak, J. Hazard. Mater., 147, 219 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.069
33.V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
34.D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R.D. Camargo and D.B. Barbosa, Int. J. Antimicrob. Agents, 34, 103 (2009); https://doi.org/10.1016/j.ijantimicag.2009.01.017
35.A.A. Soliman, Spectrochim. Acta A, 53, 509 (1997); https://doi.org/10.1016/S1386-1425(96)01823-9
36.Z. Zaheer and Rafiuddin, Colloids Surf. B Biointerfaces, 90, 48 (2012);https://doi.org/10.1016/j.colsurfb.2011.09.037
37.S.R. Bai and T.E. Abraham, Bioresour. Technol., 79, 73 (2001); https://doi.org/10.1016/S0960-8524(00)00107-3
38.Y.G. Abou El-Reash, M. Otto, I.M. Kenawy and A.M. Ouf, Int. J. Biol. Macromol., 49, 513 (2011); https://doi.org/10.1016/j.ijbiomac.2011.06.001
39.I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
40.H. Freundlich and W. Heller, J. Am. Chem. Soc., 61, 2228 (1939); https://doi.org/10.1021/ja01877a071
41.Y.V.S. Sai Krishna and G. Sandhya, Bull. Chem. Soc. Ethiop., 32, 225 (2018); https://doi.org/10.4314/bcse.v32i2.4
42.K.M. Al-Qahtani, The Egypt. J. Aquatic Res., 43, 269 (2017); https://doi.org/10.1016/j.ejar.2017.10.003
43.H.-T. Fan, J.-X. Liu, H. Yao, Z.-G. Zhang, F. Yan and W.-X. Li, Ind. Eng. Chem. Res., 53, 369 (2014); https://doi.org/10.1021/ie4027814
44.F. Ciesielczyk, P. Bartczak and T. Jesionowski, Adsorption, 22, 445 (2016); https://doi.org/10.1007/s10450-015-9703-7
References
2.B.A. Lajayer, M. Ghorbanpour and S. Nikabadi, Ecotoxicol. Environ. Saf., 145, 377 (2017); https://doi.org/10.1016/j.ecoenv.2017.07.035
3.R.R. Pawar, Lalhmunsiama, M. Kim, J.-G. Kim, S.-M. Hong, S.Y. Sawant and S.M. Lee, Appl. Clay Sci., 162, 339 (2018); https://doi.org/10.1016/j.clay.2018.06.014
4.F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011); https://doi.org/10.1016/j.jenvman.2010.11.011
5.S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu and J. Zhou, Chem. Eng. J., 226, 30 (2013); https://doi.org/10.1016/j.cej.2013.04.060
6.C. Cheng, J. Wang, X. Yang, A. Li and C. Philippe, J. Hazard. Mater., 264, 332 (2014); https://doi.org/10.1016/j.jhazmat.2013.11.028
7.Q. Wang, H.J. Qian, Y.P. Yang, Z. Zhang, C. Naman and X.H. Xu, J. Contam. Hydrol., 114, 35 (2010); https://doi.org/10.1016/j.jconhyd.2010.02.006
8.N. Mahlooji, M. Behzad, H. Amiri Rudbari, G. Bruno and B. Ghanbari, Inorg. Chim. Acta, 445, 124 (2016); https://doi.org/10.1016/j.ica.2016.02.040
9.E.L. Chang, C. Simmers and D.A. Knight, Pharmaceuticals, 3, 1711 (2010); https://doi.org/10.3390/ph3061711
10.M.M. Abd-Elzaher, A.A. Labib, H.A. Mousa, S.A. Moustafa, M.M. Ali and A.A. El-Rashedy, Beni-Suef Univ. J. Appl. Sci., 5, 85 (2016);https://doi.org/10.1016/j.bjbas.2016.01.001
11.J.F. Adediji, E.T. Olayinka, M.A. Adebayo and O. Babatunde, Int. J. Phys. Sci., 4, 529 (2009).
12.S.A. Patil, C.T. Prabhakara, B.M. Halasangi, S.S. Toragalmath and P.S. Badami, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 641 (2015); https://doi.org/10.1016/j.saa.2014.08.028
13.L. Jia, J. Xu, X. Zhao, Sh. Shen, T. Zhou, Zh. Xu, T. Zhu, R. Chen, T. Ma, J. Xie, K. Dong and J. Huang, J. Inorg. Biochem., 159, 107 (2016);https://doi.org/10.1016/j.jinorgbio.2016.02.033
14.M. Rajabi, S. Asemipour, B. Barfi, M.R. Jamali and M. Behzad, J. Mol. Liq., 194, 166 (2014); https://doi.org/10.1016/j.molliq.2014.01.026
15.A. Asghari, M. Ghazaghi, M. Rajabi, M. Behzad and M. Ghaedi, J. Serb. Chem. Soc., 79, 63 (2014); https://doi.org/10.2298/JSC062212081A
16.V. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, A. Makhlouf, M. Goodarzi and A. Garshasbi, Crit. Rev. Environ. Sci. Technol., 46, 93 (2016); https://doi.org/10.1080/10643389.2015.1061874
17.H. Sadegh, R.S. Ghoshekandi, A. Masjedi, Z. Mahmoodi and M. Kazemi, Int. J. Nano Dimens., 7, 109 (2016).
18.J. Theron, J. Walker and T. Cloete, Crit. Rev. Microbiol., 34, 43 (2008); https://doi.org/10.1080/10408410701710442
19.E.A. Dil, M. Ghaedi and A. Asfaram, Ultrason. Sonochem., 34, 792 (2017); https://doi.org/10.1016/j.ultsonch.2016.07.015
20.M. Machida, T. Mochimaru and H. Tatsumoto, Carbon, 44, 2681 (2006); https://doi.org/10.1016/j.carbon.2006.04.003
21.Y. Sharma, V. Srivastava, V. Singh, S. Kaul and C. Weng, Environ. Technol., 30, 583 (2009); https://doi.org/10.1080/09593330902838080
22.I. Ali, Chem. Rev., 112, 5073 (2012); https://doi.org/10.1021/cr300133d
23.J. Lee, S. Mahendra and P.J.J. Alvarez, ACS Nano, 4, 3580 (2010); https://doi.org/10.1021/nn100866w
24.C. Chen and X. Wang, Ind. Eng. Chem. Fundam., 45, 9144 (2006); https://doi.org/10.1021/ie060791z
25.S. Wang, H. Sun, H.-M. Ang and M. Tade´, Chem. Eng. J., 226, 336 (2013); https://doi.org/10.1016/j.cej.2013.04.070
26.T. Luo, J. Cui, S. Hu, Y. Huang and C. Jing, Environ. Sci. Technol., 44, 9094 (2010); https://doi.org/10.1021/es1024355
27.S. Singh, K. Barick and D. Bahadur, Nanomater. Nanotechnol., 3, 20 (2013); https://doi.org/10.5772/57237
28.J. Feng, D.-D. Zhang, Y.-F. Liu, Y. Bai, Q.-D. Chen, S.-Y. Liu and H.-B. Sun, J. Phys. Chem. C, 114, 6718 (2010); https://doi.org/10.1021/jp9122503
29.S. Singh, K. Barick and D. Bahadur, Int. J. Nanosci., 10, 1001 (2011); https://doi.org/10.1142/S0219581X11008654
30.Y. Shen, J. Tang, Z. Nie, Y. Wang, Y. Ren and L. Zuo, Sep. Purif. Technol., 68, 312 (2009); https://doi.org/10.1016/j.seppur.2009.05.020
31.L. Wang, J. Li, Q. Jiang and L. Zhao, Dalton Trans., 41, 4544 (2012); https://doi.org/10.1039/c2dt11827k
32.M. Tuzen and M. Soylak, J. Hazard. Mater., 147, 219 (2007); https://doi.org/10.1016/j.jhazmat.2006.12.069
33.V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
34.D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R.D. Camargo and D.B. Barbosa, Int. J. Antimicrob. Agents, 34, 103 (2009); https://doi.org/10.1016/j.ijantimicag.2009.01.017
35.A.A. Soliman, Spectrochim. Acta A, 53, 509 (1997); https://doi.org/10.1016/S1386-1425(96)01823-9
36.Z. Zaheer and Rafiuddin, Colloids Surf. B Biointerfaces, 90, 48 (2012);https://doi.org/10.1016/j.colsurfb.2011.09.037
37.S.R. Bai and T.E. Abraham, Bioresour. Technol., 79, 73 (2001); https://doi.org/10.1016/S0960-8524(00)00107-3
38.Y.G. Abou El-Reash, M. Otto, I.M. Kenawy and A.M. Ouf, Int. J. Biol. Macromol., 49, 513 (2011); https://doi.org/10.1016/j.ijbiomac.2011.06.001
39.I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
40.H. Freundlich and W. Heller, J. Am. Chem. Soc., 61, 2228 (1939); https://doi.org/10.1021/ja01877a071
41.Y.V.S. Sai Krishna and G. Sandhya, Bull. Chem. Soc. Ethiop., 32, 225 (2018); https://doi.org/10.4314/bcse.v32i2.4
42.K.M. Al-Qahtani, The Egypt. J. Aquatic Res., 43, 269 (2017); https://doi.org/10.1016/j.ejar.2017.10.003
43.H.-T. Fan, J.-X. Liu, H. Yao, Z.-G. Zhang, F. Yan and W.-X. Li, Ind. Eng. Chem. Res., 53, 369 (2014); https://doi.org/10.1021/ie4027814
44.F. Ciesielczyk, P. Bartczak and T. Jesionowski, Adsorption, 22, 445 (2016); https://doi.org/10.1007/s10450-015-9703-7