Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Graphene Oxide-Paraffin as Working Electrode for Cyclic Voltammetry Analysis for Cadmium(II)
Corresponding Author(s) : Pirim Setiarso
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
In this work, the composition ratio of graphene oxide-paraffin as the best working electrode for analysis of cadmium solution at optimum conditions using cyclic voltammetry is reported. Graphene oxide from graphite was synthesized and characterized using the improved Hummer method. Testing the composition and condition of graphene oxide:paraffin electrode is best done by manipulating the graphene oxide:paraffin ratio, pH, deposition time and scan rate. The composition with a ratio of 8:2 % of graphene oxide:paraffin electrode produces the best of voltammogram. Recovery analysis is also performed with the results of linear curves in cadmium(II) solution with linearity 0.98992. Cyclic voltammetry analysis using graphene oxide:paraffin electrodes at optimum pH resulted an average recovery of 97.64 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla and D.J. Sutton, EXS. 101, 133 (2012); https://doi.org/10.1007/978-3-7643-8340-4_6.
- D.E. Keil, J. Berger-Ritchie and G.A. McMillin, Lab. Med., 42, 735 (2011); https://doi.org/10.1309/LMYKGU05BEPE7IAW.
- A.A. Ensafi, S. Abbasi, H. Rahimi Mansour and I. Mohammadpour Baltork, Anal. Sci., 17, 609 (2001); https://doi.org/10.2116/analsci.17.609.
- S. Zhang and W. Huang, Anal. Sci., 17, 983 (2001); https://doi.org/10.2116/analsci.17.983.
- G. March, T.D. Nguyen and B. Piro, Biosensors, 5, 241 (2015); https://doi.org/10.3390/bios5020241.
- R. Jain, N. Jadon and K. Singh, J. Electrochem. Soc., 163, H159 (2016); https://doi.org/10.1149/2.0251603jes.
- J. Wang, Analytical Electrohemistry, VCH Publisher: New York (1994).
- P.B. Pawar, S. Shukla and S. Saxena, J. Power Sources, 321, 102 (2016); https://doi.org/10.1016/j.jpowsour.2016.04.127.
- T.N. Blanton and D. Majumdar, Characterization of X-ray Irradiated Graphene Oxide Coatings using X-Ray Diffraction, X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy, JCPDSInternational Center for Diffraction Data (2013).
- Y.-R. Huang, P.-H. Chuang and C.-L. Chen, Int. J. Heat Mass Transfer, 91, 45 (2015); https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.110.
- Nuryono and Suyanta, Indo. J. Chem., 4, 125 (2004).
References
P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla and D.J. Sutton, EXS. 101, 133 (2012); https://doi.org/10.1007/978-3-7643-8340-4_6.
D.E. Keil, J. Berger-Ritchie and G.A. McMillin, Lab. Med., 42, 735 (2011); https://doi.org/10.1309/LMYKGU05BEPE7IAW.
A.A. Ensafi, S. Abbasi, H. Rahimi Mansour and I. Mohammadpour Baltork, Anal. Sci., 17, 609 (2001); https://doi.org/10.2116/analsci.17.609.
S. Zhang and W. Huang, Anal. Sci., 17, 983 (2001); https://doi.org/10.2116/analsci.17.983.
G. March, T.D. Nguyen and B. Piro, Biosensors, 5, 241 (2015); https://doi.org/10.3390/bios5020241.
R. Jain, N. Jadon and K. Singh, J. Electrochem. Soc., 163, H159 (2016); https://doi.org/10.1149/2.0251603jes.
J. Wang, Analytical Electrohemistry, VCH Publisher: New York (1994).
P.B. Pawar, S. Shukla and S. Saxena, J. Power Sources, 321, 102 (2016); https://doi.org/10.1016/j.jpowsour.2016.04.127.
T.N. Blanton and D. Majumdar, Characterization of X-ray Irradiated Graphene Oxide Coatings using X-Ray Diffraction, X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy, JCPDSInternational Center for Diffraction Data (2013).
Y.-R. Huang, P.-H. Chuang and C.-L. Chen, Int. J. Heat Mass Transfer, 91, 45 (2015); https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.110.
Nuryono and Suyanta, Indo. J. Chem., 4, 125 (2004).