Copyright (c) 2020 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Template-Free Synthesis of Porous Carbon from Merbau Wood by H2O2-ZnCl2 Hydrothermal Treatment
Corresponding Author(s) : Darma Santi
Asian Journal of Chemistry,
Vol. 32 No. 4 (2020): Vol 32 Issue 4, 2020
Abstract
Zinc(II) chloride, as an activating agent and H2O2 as an oxidizing agent, prepared the hydrothermal treatment synthesis of porous carbon (HC). The hydrothermal followed by carbonization and then by oxidation at 350 °C under oxygen stream (HC-Ox). All the products characterized by XRD, FT-IR, amount of oxygenated functional groups (OFGs) obtained by the Boehm method, the total acid amount by NH3 base vapour adsorption, surface area analyzer (SAA) and SEM. The XRD results showed that all of the carbonized samples were amorphous, which characteristic for porous carbonized. The results of FT-IR and Boehm titration revealed that the phenolic group was the highest contributor to OFGs on HC-Ox samples (7.095 meq/g) and carboxylic groups of 2.685 meq/g. The maximum BET surface area was found to be 443.5 (m2/g) for C-Ox and 232.2 (m2/g) for HC-Ox. The SEM image displayed that the morphology of the HC samples was a stacking honeycomb-like structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.V. Chistyakov and M.V. Tsodikov, Russ. J. Appl. Chem., 91, 1090 (2018); https://doi.org/10.1134/S1070427218070054
- D. Bergna, T. Varila, H. Romar and U. Lassi, J. Carbon Res., 4, 41 (2018); https://doi.org/10.3390/c4030041
- M. Pongsendana, W. Trisunaryanti, F.W. Artanti, I.I. Falah and Sutarno, Korean J. Chem. Eng., 34, 2591 (2017); https://doi.org/10.1007/s11814-017-0165-3
- L. Zhang, L. Jin, B. Liu and J. He, Front. Chem., 7, 22 (2019); https://doi.org/10.3389/fchem.2019.00022
- W. Xin and Y. Song, RSC Adv., 5, 83239 (2015); https://doi.org/10.1039/C5RA16864C
- J. Hayashi, N. Yamamoto, T. Horikawa, K. Muroyama and V.G. Gomes, J. Colloid Interface Sci., 281, 437 (2005); https://doi.org/10.1016/j.jcis.2004.08.092
- Z. Hu and E.F. Vansant, J. Colloid Interface Sci., 176, 422 (1995); https://doi.org/10.1006/jcis.1995.9949
- A. Jain, R. Balasubramanian and M.P. Srinivasan, Chem. Eng. J., 273, 622 (2015); https://doi.org/10.1016/j.cej.2015.03.111
- A.D. Prasiwi, W. Trisunaryanti, Triyono, I.I. Falah, D. Santi, M.F. Marsuki, Indones. J. Chem., 19, 575 (2019).
- https://doi.org/10.22146/ijc.34189
- A.V. Bridgwater and G.V.C. Peacocke, Renew. Sustain. Energy Rev., 4, 1 (2000); https://doi.org/10.1016/S1364-0321(99)00007-6
- E. Apaydin-Varol and Y.A. Erulken, J. Taiwan Inst. Chem. Eng., 54, 37 (2015); https://doi.org/10.1016/j.jtice.2015.03.003
- C.C. Huang, H.S. Li and C.H. Chen, J. Hazard. Mater., 159, 523 (2008); https://doi.org/10.1016/j.jhazmat.2008.02.051
- L. Li, P.A. Quinlivan and D.R.U. Knappe, Carbon, 40, 2085 (2002); https://doi.org/10.1016/S0008-6223(02)00069-6
- S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk and H.A. Andreas, Carbon, 48, 1252 (2010); https://doi.org/10.1016/j.carbon.2009.11.050
- P.T. Williams and S. Besler, Renew. Energy, 7, 233 (1996); https://doi.org/10.1016/0960-1481(96)00006-7
- A. Zeriouh and L. Belkbir, Thermochim. Acta, 258, 243 (1995); https://doi.org/10.1016/0040-6031(94)02246-K
- Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li and Y. Wang, Chem. Eng. J., 217, 345 (2013); https://doi.org/10.1016/j.cej.2012.09.038
- W. Li, K. Yang, J. Peng, L. Zhang, S. Guo and H. Xia, Ind. Crops Prod., 28, 190 (2008); https://doi.org/10.1016/j.indcrop.2008.02.012
- M. Müller-Hagedorn, H. Bockhorn, L. Krebs and U. Müller, J. Anal. Appl. Pyrolysis, 68–69, 231 (2003); https://doi.org/10.1016/S0165-2370(03)00065-2
- A. Jain, S. Jayaraman, R. Balasubramanian and M.P. Srinivasan, J. Mater. Chem. A Mater. Energy Sustain., 2, 520 (2014); https://doi.org/10.1039/C3TA12648J
- H. Shang, Y. Lu, F. Zhao, C. Chao, B. Zhang and H. Zhang, RSC Adv., 5, 75728 (2015); https://doi.org/10.1039/C5RA12406A
- E. Altintig and S. Kirkil, J. Taiwan Inst. Chem. Eng., 63, 180 (2016); https://doi.org/10.1016/j.jtice.2016.02.032
- S.H. Zeronian and M.K. Inglesby, Cellulose, 2, 265 (1995); https://doi.org/10.1007/BF00811817
- A.S. Amarasekara and C.C. Ebede, Bioresour. Technol., 100, 5301 (2009); https://doi.org/10.1016/j.biortech.2008.12.066
- C. Kalinke, P.R. Oliveira, G. Oliveira, A.S. Mangrich, L.H. MarcolinoJunior and M.F. Bergamini, Anal. Chim. Acta, 983, 103 (2017); https://doi.org/10.1016/j.aca.2017.06.025
- L. Xie, Q. Gao, C. Wu and J. Hu, Micropor. Mesopor. Mater., 86, 323 (2005); https://doi.org/10.1016/j.micromeso.2005.07.044
- S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press Inc.: London, edn 2 (1982).
- K. Kaneko, J. Membr. Sci., 96, 59 (1994); https://doi.org/10.1016/0376-7388(94)00126-X
- S. Lowell, J.E. Shields, M.A. Thomas and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Choice Reviews Online, Springer Science Business Media: New York (2004).
References
A.V. Chistyakov and M.V. Tsodikov, Russ. J. Appl. Chem., 91, 1090 (2018); https://doi.org/10.1134/S1070427218070054
D. Bergna, T. Varila, H. Romar and U. Lassi, J. Carbon Res., 4, 41 (2018); https://doi.org/10.3390/c4030041
M. Pongsendana, W. Trisunaryanti, F.W. Artanti, I.I. Falah and Sutarno, Korean J. Chem. Eng., 34, 2591 (2017); https://doi.org/10.1007/s11814-017-0165-3
L. Zhang, L. Jin, B. Liu and J. He, Front. Chem., 7, 22 (2019); https://doi.org/10.3389/fchem.2019.00022
W. Xin and Y. Song, RSC Adv., 5, 83239 (2015); https://doi.org/10.1039/C5RA16864C
J. Hayashi, N. Yamamoto, T. Horikawa, K. Muroyama and V.G. Gomes, J. Colloid Interface Sci., 281, 437 (2005); https://doi.org/10.1016/j.jcis.2004.08.092
Z. Hu and E.F. Vansant, J. Colloid Interface Sci., 176, 422 (1995); https://doi.org/10.1006/jcis.1995.9949
A. Jain, R. Balasubramanian and M.P. Srinivasan, Chem. Eng. J., 273, 622 (2015); https://doi.org/10.1016/j.cej.2015.03.111
A.D. Prasiwi, W. Trisunaryanti, Triyono, I.I. Falah, D. Santi, M.F. Marsuki, Indones. J. Chem., 19, 575 (2019).
https://doi.org/10.22146/ijc.34189
A.V. Bridgwater and G.V.C. Peacocke, Renew. Sustain. Energy Rev., 4, 1 (2000); https://doi.org/10.1016/S1364-0321(99)00007-6
E. Apaydin-Varol and Y.A. Erulken, J. Taiwan Inst. Chem. Eng., 54, 37 (2015); https://doi.org/10.1016/j.jtice.2015.03.003
C.C. Huang, H.S. Li and C.H. Chen, J. Hazard. Mater., 159, 523 (2008); https://doi.org/10.1016/j.jhazmat.2008.02.051
L. Li, P.A. Quinlivan and D.R.U. Knappe, Carbon, 40, 2085 (2002); https://doi.org/10.1016/S0008-6223(02)00069-6
S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk and H.A. Andreas, Carbon, 48, 1252 (2010); https://doi.org/10.1016/j.carbon.2009.11.050
P.T. Williams and S. Besler, Renew. Energy, 7, 233 (1996); https://doi.org/10.1016/0960-1481(96)00006-7
A. Zeriouh and L. Belkbir, Thermochim. Acta, 258, 243 (1995); https://doi.org/10.1016/0040-6031(94)02246-K
Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li and Y. Wang, Chem. Eng. J., 217, 345 (2013); https://doi.org/10.1016/j.cej.2012.09.038
W. Li, K. Yang, J. Peng, L. Zhang, S. Guo and H. Xia, Ind. Crops Prod., 28, 190 (2008); https://doi.org/10.1016/j.indcrop.2008.02.012
M. Müller-Hagedorn, H. Bockhorn, L. Krebs and U. Müller, J. Anal. Appl. Pyrolysis, 68–69, 231 (2003); https://doi.org/10.1016/S0165-2370(03)00065-2
A. Jain, S. Jayaraman, R. Balasubramanian and M.P. Srinivasan, J. Mater. Chem. A Mater. Energy Sustain., 2, 520 (2014); https://doi.org/10.1039/C3TA12648J
H. Shang, Y. Lu, F. Zhao, C. Chao, B. Zhang and H. Zhang, RSC Adv., 5, 75728 (2015); https://doi.org/10.1039/C5RA12406A
E. Altintig and S. Kirkil, J. Taiwan Inst. Chem. Eng., 63, 180 (2016); https://doi.org/10.1016/j.jtice.2016.02.032
S.H. Zeronian and M.K. Inglesby, Cellulose, 2, 265 (1995); https://doi.org/10.1007/BF00811817
A.S. Amarasekara and C.C. Ebede, Bioresour. Technol., 100, 5301 (2009); https://doi.org/10.1016/j.biortech.2008.12.066
C. Kalinke, P.R. Oliveira, G. Oliveira, A.S. Mangrich, L.H. MarcolinoJunior and M.F. Bergamini, Anal. Chim. Acta, 983, 103 (2017); https://doi.org/10.1016/j.aca.2017.06.025
L. Xie, Q. Gao, C. Wu and J. Hu, Micropor. Mesopor. Mater., 86, 323 (2005); https://doi.org/10.1016/j.micromeso.2005.07.044
S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press Inc.: London, edn 2 (1982).
K. Kaneko, J. Membr. Sci., 96, 59 (1994); https://doi.org/10.1016/0376-7388(94)00126-X
S. Lowell, J.E. Shields, M.A. Thomas and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Choice Reviews Online, Springer Science Business Media: New York (2004).