Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural Dependence of Non-Linear Optical Properties of Molecules Containing Naphthalene Linked to Nitrophenyl Group–A DFT Study
Corresponding Author(s) : Anju Linda Varghese
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
Nonlinear optical (NLO) properties of N-[3-(naphthalene-1-yloxy)butyl]-4-nitroaniline and N-[3-(naphthalene-1-yloxy)butyl]-2,4-dinitroaniline have been calculated theoretically. Theoretical calculations were performed with four different hybrid density functional theories (DFT) i.e. BPV86, B3LYP, LSDA and M-06 with 6-31++G(d,p) basis set. The results showed that these molecular systems have large first static hyperpolarizabilities. Moreover, NLO response of these molecular systems decreased considerably when nitrophenyl is replaced by dinitrophenyl group.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Ambujam, K. Rajarajan, S. Selvakumar, J. Madhavan, G. Mohamed and P. Sagayaraj, Opt. Mater., 29, 657 (2007); https://doi.org/10.1016/j.optmat.2005.11.008.
- K. Meera, R. Muralidharan, R. Dhanasekaran, P. Manyum and P. Ramasamy, J. Cryst. Growth, 263, 510 (2004); https://doi.org/10.1016/j.jcrysgro.2003.11.093.
- J.L. Bredas, C. Adant, P. Tackx, A. Persoons and B.M. Pierce, Chem. Rev., 94, 243 (1994); https://doi.org/10.1021/cr00025a008.
- L.R. Dalton, A.W. Harper, R. Ghosn, W.H. Steier, H. Fetterman, M. Ziari, Y. Shi, R.V. Mustacich, A.K.-Y. Jen and K.J. Shea, Chem. Mater., 7, 1060 (1995); https://doi.org/10.1021/cm00054a006.
- C.J. Raj, S. Dinakaran, S. Krishnan, B.M. Boaz, R. Robert and S.J. Das, Opt. Commun., 281, 2285 (2008); https://doi.org/10.1016/j.optcom.2007.12.019.
- H.S. Nalwa and S. Miyata, Nonlinear Optical Organic Molecules and Polymers, CRC Press: Boca Raton, p. 611 (1997).
- P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley (1991).
- A. Shanthi, C. Krishnan and P. Selvarajan, J. Cryst. Growth, 393, 7 (2014); https://doi.org/10.1016/j.jcrysgro.2013.12.011.
- M. Sethuram, G. Bhargavi, M.V. Rajasehakaran, M. Dhandapani and G. Amirthaganesan, Optik, 125, 55 (2014); https://doi.org/10.1016/j.ijleo.2013.06.069.
- G.A. Babu, R.P. Ramasamy, P. Ramasamy and S. Natarajan, J. Cryst. Growth, 311, 3461 (2009); https://doi.org/10.1016/j.jcrysgro.2009.04.007.
- I. Osman, Int. J. Mol. Sci., 18, 239 (2017); https://doi.org/10.3390/ijms18020239.
- R.M. El-Shishtawy, A.M. Asiri, S.G. Aziz and S.A.K. Elroby, J. Mol. Model., 20, 2241 (2014); https://doi.org/10.1007/s00894-014-2241-5.
- J. Kulhanek and F. Bures, Beilstein J. Org. Chem., 8, 25 (2012); https://doi.org/10.3762/bjoc.8.4.
- T.D. Kim and K.S. Lee, Macromol. Rapid Commun., 36, 943 (2015); https://doi.org/10.1002/marc.201400749.
- X. Chen, C. Jia, Z. Wan, J. Zhang and X. Yao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 123, 282 (2014); https://doi.org/10.1016/j.saa.2013.12.072.
- P. Srinivasan, T. Kanagasekaran and R. Gopalakrishnan, Cryst. Growth Des., 8, 2340 (2008); https://doi.org/10.1021/cg701143n.
- U. Gubler, S. Concilio, C. Bosshard, I. Biaggio, P. Günter, R.E. Martin, M.J. Edelmann, J.A. Wytko and F. Diederich, Appl. Phys. Lett., 81, 2322 (2002); https://doi.org/10.1063/1.1507834.
- R.E. Martin, J.A. Wytko, F. Diederich, C. Boudon, J.-P. Gisselbrecht and M. Gross, Helv. Chim. Acta, 82, 1470 (1999); https://doi.org/10.1002/(SICI)1522-2675(19990908)82:9<1470::AIDHLCA1470>3.0.CO;2-N.
- I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley: London, UK, edn 1, pp. 879–880 (1978).
- E. Kavitha, N. Sandaraganesan and S. Sebastian, Indian J. Pure Appl. Phys., 48, 20 (2010).
- K.H. Kim, Y.K. Han and J. Jung, Theor. Chem. Acc., 113, 233 (2005); https://doi.org/10.1007/s00214-005-0630-7.
- R.G. Pearson, J. Chem. Sci., 117, 369 (2005); https://doi.org/10.1007/BF02708340.
- P.K. Chattaraj and B. Maiti, J. Am. Chem. Soc., 125, 2705 (2003); https://doi.org/10.1021/ja0276063.
- P.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); https://doi.org/10.1021/ja00364a005.
- A.C. Mebi, J. Chem. Sci., 123, 727 (2011); https://doi.org/10.1007/s12039-011-0131-2.
- A. Hinchliffe and H.J.S. Machado, Electron. J. Theor. Chem., 2, 49 (1997); https://doi.org/10.1002/ejtc.28.
- A. Hinchliffe, J.J. Perez and H.J.S. Machado, Electron. J. Theor. Chem., 2, 325 (1997); https://doi.org/10.1002/ejtc.63.
- S.T. Howard, I.A. Fallis and D.J. Willock, Mol. Phys., 97, 913 (1999); https://doi.org/10.1080/00268979909482893.
- S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 58, 1200 (1980); https://doi.org/10.1139/p80-159.
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhas, Phys. Rev. B, 46, 6671 (1992); https://doi.org/10.1103/PhysRevB.46.6671.
- H. Soscún, O. Castellano, Y. Bermúdez, C. Toro-Mendoza, A. Marcano and Y. Alvarado, J. Mol. Struct. THEOCHEM, 592, 19 (2002); https://doi.org/10.1016/S0166-1280(02)00222-1.
- K.S. Thanthiriwatte and K.M.N. de Silva, J. Mol. Struct. THEOCHEM, 617, 169 (2002); https://doi.org/10.1016/S0166-1280(02)00419-0.
References
K. Ambujam, K. Rajarajan, S. Selvakumar, J. Madhavan, G. Mohamed and P. Sagayaraj, Opt. Mater., 29, 657 (2007); https://doi.org/10.1016/j.optmat.2005.11.008.
K. Meera, R. Muralidharan, R. Dhanasekaran, P. Manyum and P. Ramasamy, J. Cryst. Growth, 263, 510 (2004); https://doi.org/10.1016/j.jcrysgro.2003.11.093.
J.L. Bredas, C. Adant, P. Tackx, A. Persoons and B.M. Pierce, Chem. Rev., 94, 243 (1994); https://doi.org/10.1021/cr00025a008.
L.R. Dalton, A.W. Harper, R. Ghosn, W.H. Steier, H. Fetterman, M. Ziari, Y. Shi, R.V. Mustacich, A.K.-Y. Jen and K.J. Shea, Chem. Mater., 7, 1060 (1995); https://doi.org/10.1021/cm00054a006.
C.J. Raj, S. Dinakaran, S. Krishnan, B.M. Boaz, R. Robert and S.J. Das, Opt. Commun., 281, 2285 (2008); https://doi.org/10.1016/j.optcom.2007.12.019.
H.S. Nalwa and S. Miyata, Nonlinear Optical Organic Molecules and Polymers, CRC Press: Boca Raton, p. 611 (1997).
P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley (1991).
A. Shanthi, C. Krishnan and P. Selvarajan, J. Cryst. Growth, 393, 7 (2014); https://doi.org/10.1016/j.jcrysgro.2013.12.011.
M. Sethuram, G. Bhargavi, M.V. Rajasehakaran, M. Dhandapani and G. Amirthaganesan, Optik, 125, 55 (2014); https://doi.org/10.1016/j.ijleo.2013.06.069.
G.A. Babu, R.P. Ramasamy, P. Ramasamy and S. Natarajan, J. Cryst. Growth, 311, 3461 (2009); https://doi.org/10.1016/j.jcrysgro.2009.04.007.
I. Osman, Int. J. Mol. Sci., 18, 239 (2017); https://doi.org/10.3390/ijms18020239.
R.M. El-Shishtawy, A.M. Asiri, S.G. Aziz and S.A.K. Elroby, J. Mol. Model., 20, 2241 (2014); https://doi.org/10.1007/s00894-014-2241-5.
J. Kulhanek and F. Bures, Beilstein J. Org. Chem., 8, 25 (2012); https://doi.org/10.3762/bjoc.8.4.
T.D. Kim and K.S. Lee, Macromol. Rapid Commun., 36, 943 (2015); https://doi.org/10.1002/marc.201400749.
X. Chen, C. Jia, Z. Wan, J. Zhang and X. Yao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 123, 282 (2014); https://doi.org/10.1016/j.saa.2013.12.072.
P. Srinivasan, T. Kanagasekaran and R. Gopalakrishnan, Cryst. Growth Des., 8, 2340 (2008); https://doi.org/10.1021/cg701143n.
U. Gubler, S. Concilio, C. Bosshard, I. Biaggio, P. Günter, R.E. Martin, M.J. Edelmann, J.A. Wytko and F. Diederich, Appl. Phys. Lett., 81, 2322 (2002); https://doi.org/10.1063/1.1507834.
R.E. Martin, J.A. Wytko, F. Diederich, C. Boudon, J.-P. Gisselbrecht and M. Gross, Helv. Chim. Acta, 82, 1470 (1999); https://doi.org/10.1002/(SICI)1522-2675(19990908)82:9<1470::AIDHLCA1470>3.0.CO;2-N.
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley: London, UK, edn 1, pp. 879–880 (1978).
E. Kavitha, N. Sandaraganesan and S. Sebastian, Indian J. Pure Appl. Phys., 48, 20 (2010).
K.H. Kim, Y.K. Han and J. Jung, Theor. Chem. Acc., 113, 233 (2005); https://doi.org/10.1007/s00214-005-0630-7.
R.G. Pearson, J. Chem. Sci., 117, 369 (2005); https://doi.org/10.1007/BF02708340.
P.K. Chattaraj and B. Maiti, J. Am. Chem. Soc., 125, 2705 (2003); https://doi.org/10.1021/ja0276063.
P.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983); https://doi.org/10.1021/ja00364a005.
A.C. Mebi, J. Chem. Sci., 123, 727 (2011); https://doi.org/10.1007/s12039-011-0131-2.
A. Hinchliffe and H.J.S. Machado, Electron. J. Theor. Chem., 2, 49 (1997); https://doi.org/10.1002/ejtc.28.
A. Hinchliffe, J.J. Perez and H.J.S. Machado, Electron. J. Theor. Chem., 2, 325 (1997); https://doi.org/10.1002/ejtc.63.
S.T. Howard, I.A. Fallis and D.J. Willock, Mol. Phys., 97, 913 (1999); https://doi.org/10.1080/00268979909482893.
S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 58, 1200 (1980); https://doi.org/10.1139/p80-159.
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhas, Phys. Rev. B, 46, 6671 (1992); https://doi.org/10.1103/PhysRevB.46.6671.
H. Soscún, O. Castellano, Y. Bermúdez, C. Toro-Mendoza, A. Marcano and Y. Alvarado, J. Mol. Struct. THEOCHEM, 592, 19 (2002); https://doi.org/10.1016/S0166-1280(02)00222-1.
K.S. Thanthiriwatte and K.M.N. de Silva, J. Mol. Struct. THEOCHEM, 617, 169 (2002); https://doi.org/10.1016/S0166-1280(02)00419-0.