Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, DFT and Antimicrobial Study of Co(II), Ni(II), Cu(II) and Zn(II) Complexes of Novel Schiff Base Ligands Derived from 3-Amino-1,2,4-triazole-5-thiol
Corresponding Author(s) : Ajay Prakash
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
Two novel Schiff base ligands are prepared by condensing 2-hydroxy-4-methoxybenzaldehyde with 3-amino-1,2,4-triazole-5-thiol (HL1) and 2-hydroxy-3-methoxybenzaldehyde with 3-amino-1,2,4-triazole-5-thiol (HL2). The ligands were synthesized and characterized by 1H NMR, IR, HRMS and analytical data. The synthesized ligands were complexed with metal salts in 1:2 metal:ligand ratio yielded the complexes of type [M(L)2(H2O)x] [where M = Co(II), Ni(II), Cu(II) and Zn(II); x = 2 for Co(II), Ni(II), Cu(II) while x = 0 for Zn(II)]. The metal complexes were characterized by elemental analysis, IR, ESI-mass, UV-visible, ESR, molar conductance, magnetic moment measurement and thermogravimetric analysis. The results from IR spectra revealed that ligands exist in thione and thiol forms. The synthesized complexes show non-electrolytic behaviour as indicated by their molar conductance values. The structure of ligand HL1 and complexes 1-4 were fully optimized using Gaussian 09, taking 6-31g basis set and B3LYP functional. The experimental results based on various spectroscopic and analytical data predicted an octahedral geometry for Co(II), Ni(II) and Cu(II) complexes while for Zn(II) complexes the predicted geometry is tetrahedral. in vitro Antibacterial activity against Bacillus macerans (Gram-positive) and Pseudomonas striata (Gram-negative) and antifungal activity against Rhizoctonia bataticola, Alternaria alternata and Fusarium odum has been evaluated for all synthesized ligands and their metal complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Hine and C.Y. Yeh, J. Am. Chem. Soc., 89, 2669 (1967); https://doi.org/10.1021/ja00987a030.
- C. Munir, S.M. Yousaf and N. Ahmad, J. Chem. Soc. Pak., 7, 301 (1985).
- J.J. Pesek and J.H. Frost, Synth. Commun., 4, 367 (1974); https://doi.org/10.1080/00397917408064097;
- B. Dede, I. Ozmen and F. Karipcin, Polyhedron, 28, 3967 (2009); https://doi.org/10.1016/j.poly.2009.09.020.
- X. Zhou, L. Shao, Z. Jin, J.B. Liu, H. Dai and J.X. Fang, Heteroatom Chem., 18, 55 (2007); https://doi.org/10.1002/hc.20256.
- R. Malhotra, A. Ravesh and V. Singh, Phosphorus Sulfur Silicon Rel. Elem., 192, 73 (2017); https://doi.org/10.1080/10426507.2016.1225054.
- R. Alizadeh, M. Afzal and F. Arjmand, Spectrochim. Acta A Mol. Biomol. Spectrosc., 131, 625 (2014); https://doi.org/10.1016/j.saa.2014.04.051.
- M.B. Talawar, S.C. Bennur, S.K. Kankanwadi and P.A. Patil, Indian J. Pharm. Sci., 57, 194 (1995).
- T. Akhtar, S. Hameed, K.M. Khan and M.I. Choudhary, Med. Chem., 4, 539 (2008); https://doi.org/10.2174/157340608786242025.
- M. Bakherad, A. Keivanloo, B. Bahramian and S. Jajarmi, J. Organomet. Chem., 724, 206 (2013); https://doi.org/10.1016/j.jorganchem.2012.11.008.
- J. Geng, M. Li, L. Wu, J. Ren and X. Qu, J. Med. Chem., 55, 9146 (2012); https://doi.org/10.1021/jm3003813.
- J.-C. Liu, Guo, J.-S. Huang and X.-Z. You, Inorg. Chem., 42, 235 (2003); https://doi.org/10.1021/ic0258173.
- L.G. Lavrenova, N.G. Yudina, V.N. Ikorskii, V.A. Varnek, I.M. Oglezneva and S.V. Larionov, Polyhedron, 14, 1333 (1995); https://doi.org/10.1016/0277-5387(94)00398-X.
- G.B. Bagihalli, P.G. Avaji, S.A. Patil and P.S. Badami, Eur. J. Med. Chem., 43, 2639 (2008); https://doi.org/10.1016/j.ejmech.2008.02.013.
- S.V. Bhandari, K.G. Bothara, M.K. Raut, A.A. Patil, A.P. Sarkate and V.J. Mokale, Bioorg. Med. Chem., 16, 1822 (2008); https://doi.org/10.1016/j.bmc.2007.11.014.
- K.V. Sujith, J.N. Rao, P. Shetty and B. Kalluraya, Eur. J. Med. Chem., 44, 3697 (2009); https://doi.org/10.1016/j.ejmech.2009.03.044.
- T. Propst, W. Vogel, A. Propst, O. Dietze and H. Braunsteiner, J. Mol. Med., 70, 55 (1992); https://doi.org/10.1007/BF00422941.
- B.S. Holla, M. Mahalinga, M.S. Karthikeyan, B. Poojary, P.M. Akberali and N.S. Kumari, Eur. J. Med. Chem., 40, 1173 (2005); https://doi.org/10.1016/j.ejmech.2005.02.013.
- A. Kamal, S. Prabhakar, M.J. Ramaiah, P.V. Reddy, A. Mallareddy, C.R. Reddy, N. Shankaraiah, T.L. Narayan Reddy, S.N.C.V.L. Pushpavalli and M. Pal-Bhadra, Eur. J. Med. Chem., 46, 3820 (2011); https://doi.org/10.1016/j.ejmech.2011.05.050.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- S.H. Vosko, L. Wilk and M. Nusair, Can. J. Chem., 58, 1200 (1980); https://doi.org/10.1139/p80-159.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
- S. Chandra, S. Raizada, M. Tyagi and A. Gautam, Bioinorg. Chem. Appl., Article ID 51483 (2007); https://doi.org/10.1155/2007/51483.
- A. Prakash and R. Malhotra, Appl. Organomet. Chem., 32, e4098 (2018); https://doi.org/10.1002/aoc.4098.
- M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074.
- F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons Inc.: New York edn 6 (1999).
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
- S. Chandra, S. Bargujar, R. Nirwal and N. Yadav, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 91 (2013); https://doi.org/10.1016/j.saa.2012.12.014.
- B.J. Hathway, J.N. Bardley and R.D. Gillard, Essayes in Chemistry, Academic Press: New York, USA (1971).
- S.K. Sengupta, O.P. Pandey, B.K. Srivastava and V.K. Sharma, Transition Met. Chem., 23, 349 (1998); https://doi.org/10.1023/A:1006986131435.
- M. Aldeghi, S. Malhotra, D.L. Selwood and A.W.E. Chan, Chem. Biol. Drug Des., 83, 450 (2014); https://doi.org/10.1111/cbdd.12260.
References
J. Hine and C.Y. Yeh, J. Am. Chem. Soc., 89, 2669 (1967); https://doi.org/10.1021/ja00987a030.
C. Munir, S.M. Yousaf and N. Ahmad, J. Chem. Soc. Pak., 7, 301 (1985).
J.J. Pesek and J.H. Frost, Synth. Commun., 4, 367 (1974); https://doi.org/10.1080/00397917408064097;
B. Dede, I. Ozmen and F. Karipcin, Polyhedron, 28, 3967 (2009); https://doi.org/10.1016/j.poly.2009.09.020.
X. Zhou, L. Shao, Z. Jin, J.B. Liu, H. Dai and J.X. Fang, Heteroatom Chem., 18, 55 (2007); https://doi.org/10.1002/hc.20256.
R. Malhotra, A. Ravesh and V. Singh, Phosphorus Sulfur Silicon Rel. Elem., 192, 73 (2017); https://doi.org/10.1080/10426507.2016.1225054.
R. Alizadeh, M. Afzal and F. Arjmand, Spectrochim. Acta A Mol. Biomol. Spectrosc., 131, 625 (2014); https://doi.org/10.1016/j.saa.2014.04.051.
M.B. Talawar, S.C. Bennur, S.K. Kankanwadi and P.A. Patil, Indian J. Pharm. Sci., 57, 194 (1995).
T. Akhtar, S. Hameed, K.M. Khan and M.I. Choudhary, Med. Chem., 4, 539 (2008); https://doi.org/10.2174/157340608786242025.
M. Bakherad, A. Keivanloo, B. Bahramian and S. Jajarmi, J. Organomet. Chem., 724, 206 (2013); https://doi.org/10.1016/j.jorganchem.2012.11.008.
J. Geng, M. Li, L. Wu, J. Ren and X. Qu, J. Med. Chem., 55, 9146 (2012); https://doi.org/10.1021/jm3003813.
J.-C. Liu, Guo, J.-S. Huang and X.-Z. You, Inorg. Chem., 42, 235 (2003); https://doi.org/10.1021/ic0258173.
L.G. Lavrenova, N.G. Yudina, V.N. Ikorskii, V.A. Varnek, I.M. Oglezneva and S.V. Larionov, Polyhedron, 14, 1333 (1995); https://doi.org/10.1016/0277-5387(94)00398-X.
G.B. Bagihalli, P.G. Avaji, S.A. Patil and P.S. Badami, Eur. J. Med. Chem., 43, 2639 (2008); https://doi.org/10.1016/j.ejmech.2008.02.013.
S.V. Bhandari, K.G. Bothara, M.K. Raut, A.A. Patil, A.P. Sarkate and V.J. Mokale, Bioorg. Med. Chem., 16, 1822 (2008); https://doi.org/10.1016/j.bmc.2007.11.014.
K.V. Sujith, J.N. Rao, P. Shetty and B. Kalluraya, Eur. J. Med. Chem., 44, 3697 (2009); https://doi.org/10.1016/j.ejmech.2009.03.044.
T. Propst, W. Vogel, A. Propst, O. Dietze and H. Braunsteiner, J. Mol. Med., 70, 55 (1992); https://doi.org/10.1007/BF00422941.
B.S. Holla, M. Mahalinga, M.S. Karthikeyan, B. Poojary, P.M. Akberali and N.S. Kumari, Eur. J. Med. Chem., 40, 1173 (2005); https://doi.org/10.1016/j.ejmech.2005.02.013.
A. Kamal, S. Prabhakar, M.J. Ramaiah, P.V. Reddy, A. Mallareddy, C.R. Reddy, N. Shankaraiah, T.L. Narayan Reddy, S.N.C.V.L. Pushpavalli and M. Pal-Bhadra, Eur. J. Med. Chem., 46, 3820 (2011); https://doi.org/10.1016/j.ejmech.2011.05.050.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
S.H. Vosko, L. Wilk and M. Nusair, Can. J. Chem., 58, 1200 (1980); https://doi.org/10.1139/p80-159.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
S. Chandra, S. Raizada, M. Tyagi and A. Gautam, Bioinorg. Chem. Appl., Article ID 51483 (2007); https://doi.org/10.1155/2007/51483.
A. Prakash and R. Malhotra, Appl. Organomet. Chem., 32, e4098 (2018); https://doi.org/10.1002/aoc.4098.
M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074.
F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons Inc.: New York edn 6 (1999).
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
S. Chandra, S. Bargujar, R. Nirwal and N. Yadav, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 91 (2013); https://doi.org/10.1016/j.saa.2012.12.014.
B.J. Hathway, J.N. Bardley and R.D. Gillard, Essayes in Chemistry, Academic Press: New York, USA (1971).
S.K. Sengupta, O.P. Pandey, B.K. Srivastava and V.K. Sharma, Transition Met. Chem., 23, 349 (1998); https://doi.org/10.1023/A:1006986131435.
M. Aldeghi, S. Malhotra, D.L. Selwood and A.W.E. Chan, Chem. Biol. Drug Des., 83, 450 (2014); https://doi.org/10.1111/cbdd.12260.