Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Conformational Analysis of Thioglycine Molecule: A Theoretical Study
Corresponding Author(s) : Rupinder Preet Kaur
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
In the present work a conformational analysis of thioglycine was performed using DFT and MP2 computational methods at different basis sets. Harmonic vibrational frequencies were estimated at the same levels to confirm the nature of the stationary points found and also account for the zero point vibrational energy correction. The intramolecular hydrogen bonds established between the polar groups were identified by structural parameters, AIM analysis and NBO analysis. Conformer Ip is found to be the global minimum for thioglycine at all the levels of theory employed in this research. In Ip both NH2 group and S5-H6 bond are cis to the carbonyl group. Rotation barriers for the interconversion of various conformers were also calculated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, John Wiley & Sons: New York (1991).
- H.S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press: New York (1997).
- J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press: New York (1997).
- G. Pasupathi, P. Philominathan, J. Miner. Mater. Charact. Engg., 11, 904 (2012).
- M.L. Caroline and S. Vasudevan, Curr. Appl. Phys., 9, 1054 (2009); https://doi.org/10.1016/j.cap.2008.12.001.
- V. Krishnakumar, C. Ramachandraraja and R.S. Sundararajan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 68, 113 (2007); https://doi.org/10.1016/j.saa.2006.09.045.
- V. Ganesh, M. Shkir, R. Husain, R. Singh, T.B. Rao and K.K. Rao, Optik, 124, 6690 (2013); https://doi.org/10.1016/j.ijleo.2013.05.087.
- S. Sagadevan, Optik, 125, 6746 (2014); https://doi.org/10.1016/j.ijleo.2014.08.059.
- M. Selvapandiyan, J. Arumugam, P. Sundaramoorthi and S. Sudhakar, J. Alloys Compd., 580, 270 (2013); https://doi.org/10.1016/j.jallcom.2013.05.071.
- S. Selvakumar, S.M.R. Kumar, G.P. Joseph, K. Rajarajan, J. Madhavan, S.A. Rajasekar and P. Sagayaraj, Mater. Chem. Phys., 103, 153 (2007); https://doi.org/10.1016/j.matchemphys.2007.02.005.
- R. Hanumantharao and S. Kalainathan, J. Phys. Chem. Solids, 73, 724 (2012); https://doi.org/10.1016/j.jpcs.2012.01.011.
- G. Ramasamy and S. Meenakshisundaram, J. Cryst. Growth, 377, 197 (2013); https://doi.org/10.1016/j.jcrysgro.2013.05.021.
- N. Bhuvaneswari, K. Baskar and R. Dhanasekaran, Optik, 126, 3731 (2015); https://doi.org/10.1016/j.ijleo.2015.08.246.
- K. Uma, R. Manimekalai and G. Pasupathi, Int. J. Chem. Mater. Res., 3, 91 (2015); https://doi.org/10.18488/journal.64/2015.3.4/64.4.91.99.
- K. Murugadoss, K. Gayathiridevi and G. Pasupathi, J. Opt., 45, 136 (2016); https://doi.org/10.1007/s12596-015-0301-6.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
- G. Pasupathi and P. Philominathan, Mater. Lett., 62, 4386 (2008); https://doi.org/10.1016/j.matlet.2008.07.023.
- S. Selvakumar, S.M.R. Kumar, K. Rajarajan, A.J.A. Pragasam, S.A. Rajasekar, K. Thamizharasan and P. Sagayaraj, Cryst. Growth Des., 6, 2607 (2006); https://doi.org/10.1021/cg060414p.
- R. Priya, S. Krishnan, C.J. Raj and S.J. Das, Cryst. Res. Technol., 44, 1272 (2009); https://doi.org/10.1002/crat.200900504.
- A. Periyasamy, S. Murugan and M. Palaniswamy, Rasayan J. Chem., 4, 981 (2009).
- S. Suresh, Optik, 125, 1223 (2014); https://doi.org/10.1016/j.ijleo.2013.07.154.
- R.H. Rao and S. Kalainathan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 97, 456 (2012); https://doi.org/10.1016/j.saa.2012.06.033.
- K.T Rathod, I.B. Patel, C.F. Desai, Y.H. Gandhi, Int. J. Lumin. Appl., 5, 86 (2015).
- S. Ariponnammal, S. Chandrasekaran and C. Sanjeeviraja, Dig. J. Nanomater. Biostruct., 7, 947 (2012).
- S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
- K. Kiguchi, M. Kato, M. Okunaka and Y. Taniguchi, Appl. Phys. Lett., 60, 1933 (1992); https://doi.org/10.1063/1.107155.
- J. Ramajothi, S. Dhanuskodi and K. Nagarajan, Cryst. Res. Technol., 39, 414 (2004); https://doi.org/10.1002/crat.200310204.
- B.W. Mott, Micro-Indentation Hardness Testing, Buterworths: London (1956).
- E.M. Onitch, Mikroscopie, 2, 131 (1947).
- M. Hanneman, Metallurgia Manchu., 23, 135 (1941).
- K.K. Rao and D.B. Sirdeshmukh, Bull. Mater. Sci., 5, 449 (1983); https://doi.org/10.1007/BF02743923.
- S. Karthick, A.A. Irudayaraj, A.D. Raj and R. Vinayagamoorthy, Int. J. Technol. Res. Appl., 37, 86 (2016).
- P. Maadeswaran, S. Thirumalairajan and J. Chandrasekaran, Optoelectron. Adv. Mater., 3, 36 (2009).
- G. Pasupathi, K. Uma, C. Ramachandra Raja and R. Manimekalai, Mater. Lett., 161, 224 (2015); https://doi.org/10.1016/j.matlet.2015.07.111.
References
P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, John Wiley & Sons: New York (1991).
H.S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press: New York (1997).
J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press: New York (1997).
G. Pasupathi, P. Philominathan, J. Miner. Mater. Charact. Engg., 11, 904 (2012).
M.L. Caroline and S. Vasudevan, Curr. Appl. Phys., 9, 1054 (2009); https://doi.org/10.1016/j.cap.2008.12.001.
V. Krishnakumar, C. Ramachandraraja and R.S. Sundararajan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 68, 113 (2007); https://doi.org/10.1016/j.saa.2006.09.045.
V. Ganesh, M. Shkir, R. Husain, R. Singh, T.B. Rao and K.K. Rao, Optik, 124, 6690 (2013); https://doi.org/10.1016/j.ijleo.2013.05.087.
S. Sagadevan, Optik, 125, 6746 (2014); https://doi.org/10.1016/j.ijleo.2014.08.059.
M. Selvapandiyan, J. Arumugam, P. Sundaramoorthi and S. Sudhakar, J. Alloys Compd., 580, 270 (2013); https://doi.org/10.1016/j.jallcom.2013.05.071.
S. Selvakumar, S.M.R. Kumar, G.P. Joseph, K. Rajarajan, J. Madhavan, S.A. Rajasekar and P. Sagayaraj, Mater. Chem. Phys., 103, 153 (2007); https://doi.org/10.1016/j.matchemphys.2007.02.005.
R. Hanumantharao and S. Kalainathan, J. Phys. Chem. Solids, 73, 724 (2012); https://doi.org/10.1016/j.jpcs.2012.01.011.
G. Ramasamy and S. Meenakshisundaram, J. Cryst. Growth, 377, 197 (2013); https://doi.org/10.1016/j.jcrysgro.2013.05.021.
N. Bhuvaneswari, K. Baskar and R. Dhanasekaran, Optik, 126, 3731 (2015); https://doi.org/10.1016/j.ijleo.2015.08.246.
K. Uma, R. Manimekalai and G. Pasupathi, Int. J. Chem. Mater. Res., 3, 91 (2015); https://doi.org/10.18488/journal.64/2015.3.4/64.4.91.99.
K. Murugadoss, K. Gayathiridevi and G. Pasupathi, J. Opt., 45, 136 (2016); https://doi.org/10.1007/s12596-015-0301-6.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
G. Pasupathi and P. Philominathan, Mater. Lett., 62, 4386 (2008); https://doi.org/10.1016/j.matlet.2008.07.023.
S. Selvakumar, S.M.R. Kumar, K. Rajarajan, A.J.A. Pragasam, S.A. Rajasekar, K. Thamizharasan and P. Sagayaraj, Cryst. Growth Des., 6, 2607 (2006); https://doi.org/10.1021/cg060414p.
R. Priya, S. Krishnan, C.J. Raj and S.J. Das, Cryst. Res. Technol., 44, 1272 (2009); https://doi.org/10.1002/crat.200900504.
A. Periyasamy, S. Murugan and M. Palaniswamy, Rasayan J. Chem., 4, 981 (2009).
S. Suresh, Optik, 125, 1223 (2014); https://doi.org/10.1016/j.ijleo.2013.07.154.
R.H. Rao and S. Kalainathan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 97, 456 (2012); https://doi.org/10.1016/j.saa.2012.06.033.
K.T Rathod, I.B. Patel, C.F. Desai, Y.H. Gandhi, Int. J. Lumin. Appl., 5, 86 (2015).
S. Ariponnammal, S. Chandrasekaran and C. Sanjeeviraja, Dig. J. Nanomater. Biostruct., 7, 947 (2012).
S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
K. Kiguchi, M. Kato, M. Okunaka and Y. Taniguchi, Appl. Phys. Lett., 60, 1933 (1992); https://doi.org/10.1063/1.107155.
J. Ramajothi, S. Dhanuskodi and K. Nagarajan, Cryst. Res. Technol., 39, 414 (2004); https://doi.org/10.1002/crat.200310204.
B.W. Mott, Micro-Indentation Hardness Testing, Buterworths: London (1956).
E.M. Onitch, Mikroscopie, 2, 131 (1947).
M. Hanneman, Metallurgia Manchu., 23, 135 (1941).
K.K. Rao and D.B. Sirdeshmukh, Bull. Mater. Sci., 5, 449 (1983); https://doi.org/10.1007/BF02743923.
S. Karthick, A.A. Irudayaraj, A.D. Raj and R. Vinayagamoorthy, Int. J. Technol. Res. Appl., 37, 86 (2016).
P. Maadeswaran, S. Thirumalairajan and J. Chandrasekaran, Optoelectron. Adv. Mater., 3, 36 (2009).
G. Pasupathi, K. Uma, C. Ramachandra Raja and R. Manimekalai, Mater. Lett., 161, 224 (2015); https://doi.org/10.1016/j.matlet.2015.07.111.