Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Structural and Optical Properties of Mn Doped ZnO with its Photocatalytic Activity
Corresponding Author(s) : K.M. Sreekanth
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
Metal oxides have emerged as one of the most interesting materials under the Green banner due to its potent catalytic properties. Especially, the II-VI metal oxides are gaining considerable attention in optoelectronics and in rectifying environmental issues due to their ability to produce charge carriers when accelerated with sufficient amount of energy. Zinc oxide and MnXZn(1-X)O were synthesized by co-precipitation method. We present a study of effect of doping on the structural, optical and photocatalytic properties of ZnO. The mean particle size was found to decrease from 20 nm to 11 nm and band gap (Eg) increased from 3.25 eV to 3.68 eV with the increase of doping concentration. This increase in Eg might be ascribed to the alteration of electronic arrangement of ZnO nanoparticles on doping with Mn ions. Photocatalytic reduction was conducted in a home-built reactor assembly and degradation of Cr(VI) to Cr(III) under the presence of UV LED was characterized. In the current work, 15 mol % of Mn doped ZnO (Mn0.15Zn0.85O) nanoparticles showed the better UV response as compared to the other samples. The strong UV response is due to the more 3d orbitals in the valence band owing to an excess amount of Mn dopants in ZnO nanoparticles. The increase in doping concentration of Mn accelerated the photo catalysis. This result indicates that the concentration of Mn is important in controlling the UV response of the samples. The obtained results reveal that both ZnO and MnXZn(1-X)O are promising materials as photo catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.S. Bhatkhande, V.G. Pangarkar and A.A. Beenackers, J. Chem. Technol. Biotechnol., 77, 102 (2002); https://doi.org/10.1002/jctb.532.
- W. Giurlani, G. Zangari, F. Gambinossi, M. Passaponti, E. Salvietti, F. Di Benedetto, S. Caporali and M. Innocenti, Coatings, 8, 260 (2018); https://doi.org/10.3390/coatings8080260.
- A. Mills, A. Belghazi and D. Rodman, Water Res., 30, 1973 (1996); https://doi.org/10.1016/0043-1354(96)00012-7.
- J. Gimenez, M. Aguado and S. Cervera-March, J. Mol. Catal. Chem., 105, 67 (1996); https://doi.org/10.1016/1381-1169(95)00148-4.
- Y. Xing, X. Chen and D. Wang, Environ. Sci. Technol., 41, 1439 (2007); https://doi.org/10.1021/es061499l.
- N. Daneshvar, D. Salari and S. Aber, J. Hazard. Mater., 94, 49 (2002); https://doi.org/10.1016/S0304-3894(02)00054-7.
- T. Ölmez, J. Hazard. Mater., 162, 1371 (2009); https://doi.org/10.1016/j.jhazmat.2008.06.017.
- X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun and C. Sun, Chem. Eng. J., 183, 238 (2012); https://doi.org/10.1016/j.cej.2011.12.068.
- J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang and K.V. Rao, Prog. Mater. Sci., 58, 874 (2013); https://doi.org/10.1016/j.pmatsci.2013.03.002.
- K.K. Kim, N. Koguchi, Y.W. Ok, T.-Y. Seong and S.-J. Park, Appl. Phys. Lett., 84, 3810 (2004); https://doi.org/10.1063/1.1741030.
- C. Jagadish and S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, Elsevier (2011).
- J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li and Z.L. Dong, Appl. Phys. Lett., 88, 233106 (2006); https://doi.org/10.1063/1.2210078.
- M. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater., 133, 226 (2006); https://doi.org/10.1016/j.jhazmat.2005.10.022.
- K.S. Mahavdeva, Ph. D. Thesis, Department of Material Science and Engineering, KTH-The Royal Institute of Technology, Stockhom, Sweden (2013).
- T.A. Arun, D.K. Chacko, A.A. Madhavan, T.G. Deepak, G.S. Anjusree, T. Sara, S. Ramakrishna, S.V. Nair and A. Nair, RSC Adv., 4, 1421 (2014); https://doi.org/10.1039/C3RA45021J.
- R. Viswanatha, S. Sapra, S. Sen Gupta, B. Satpati, P.V. Satyam, B.N. Dev and D.D. Sarma, J. Phys. Chem. B, 108, 6303 (2004); https://doi.org/10.1021/jp049960o.
- G.C.C. Yang and S.-W. Chan, J. Nanopart. Res., 11, 221 (2009); https://doi.org/10.1007/s11051-008-9423-y.
- S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, A.K. Ray and B.K. Dutta, Chem. Eng. J., 153, 86 (2009); https://doi.org/10.1016/j.cej.2009.06.021.
- T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song and S.L. Suib, Molecules, 21, 900 (2016); https://doi.org/10.3390/molecules21070900.
- P.D. Tran, L. Xi, S.K. Batabyal, L.H. Wong, J. Barber and J.S. Chye Loo, Phys. Chem. Chem. Phys., 14, 11596 (2012); https://doi.org/10.1039/c2cp41450c.
- H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH Verlag GmbH & Co. KGaA, p. 323 (2009).
- S.K. Kansal and Prerna, Energy Environm. Focus, 2, 203 (2013); https://doi.org/10.1166/eef.2013.1054.
- Q. Xu, S. Zhou and H. Schmidt, J. Alloys Compd., 487, 665 (2009); https://doi.org/10.1016/j.jallcom.2009.08.033.
- R.S. Yadav, A.C. Pandey and S.S. Sanjaya, Chalcogenide Lett., 6, 233 (2009).
- N. Riahi-Noori, R. Sarraf-Mamoory, P. Alizadeh and A. Mehdikhani, J. Ceram. Process. Res., 9, 246 (2008).
- S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini and V. Sengodan, Mater. Sci. Semicond. Process., 11, 6 (2008); https://doi.org/10.1016/j.mssp.2008.04.005.
- S. Ekambaram, Y. Iikubo and A. Kudo, J. Alloys Compd., 433, 237 (2007); https://doi.org/10.1016/j.jallcom.2006.06.045.
- R. Ullah and J. Dutta, J. Hazard. Mater., 156, 194 (2008); https://doi.org/10.1016/j.jhazmat.2007.12.033.
- J.M. Herrmann, Catal. Today, 53, 115 (1999); https://doi.org/10.1016/S0920-5861(99)00107-8.
- T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, Int. J. Hydrogen Energy, 27, 991 (2002); https://doi.org/10.1016/S0360-3199(02)00022-8.
- A.B. Djurisic, Y.H. Leung and A.M. Ching Ng, Mater. Horiz., 1, 400 (2014); https://doi.org/10.1039/c4mh00031e.
- M.S. Birnie, S. Riffat and M. Gillott, Int. J. Low-Carbon Technol., 1, 47 (2006); https://doi.org/10.1093/ijlct/1.1.47.
- P.S. Mukherjee and A.K. Ray, Chem. Eng. Technol., 22, 253 (1999); https://doi.org/10.1002/(SICI)1521-4125(199903)22:3<253::AIDCEAT253>3.0.CO;2-X.
- R.W. Kelsall, I.W. Hamley and M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, West Sussex (2005).
- T.L. Tan, C.W. Lai and S.B. Abd Hamid, J. Nanomater., ID 371720 (2014); https://doi.org/10.1155/2014/371720.
- S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang and S.J. Chua, J. Appl. Phys., 98, 013505 (2005); https://doi.org/10.1063/1.1940137.
- T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma and M. Kawasaki, Appl. Phys. Lett., 75, 3366 (1999); https://doi.org/10.1063/1.125353.
- S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee and S. Cho, Appl. Phys. Lett., 80, 4561 (2002); https://doi.org/10.1063/1.1487927.
- S.V. Bhat and F.L. Deepak, Solid State Commun., 135, 345 (2005); https://doi.org/10.1016/j.ssc.2005.05.051.
- F. Djouider and A. Hussain, J. Hazard. Mater., 276, 19 (2014); https://doi.org/10.1016/j.jhazmat.2014.05.004.
References
D.S. Bhatkhande, V.G. Pangarkar and A.A. Beenackers, J. Chem. Technol. Biotechnol., 77, 102 (2002); https://doi.org/10.1002/jctb.532.
W. Giurlani, G. Zangari, F. Gambinossi, M. Passaponti, E. Salvietti, F. Di Benedetto, S. Caporali and M. Innocenti, Coatings, 8, 260 (2018); https://doi.org/10.3390/coatings8080260.
A. Mills, A. Belghazi and D. Rodman, Water Res., 30, 1973 (1996); https://doi.org/10.1016/0043-1354(96)00012-7.
J. Gimenez, M. Aguado and S. Cervera-March, J. Mol. Catal. Chem., 105, 67 (1996); https://doi.org/10.1016/1381-1169(95)00148-4.
Y. Xing, X. Chen and D. Wang, Environ. Sci. Technol., 41, 1439 (2007); https://doi.org/10.1021/es061499l.
N. Daneshvar, D. Salari and S. Aber, J. Hazard. Mater., 94, 49 (2002); https://doi.org/10.1016/S0304-3894(02)00054-7.
T. Ölmez, J. Hazard. Mater., 162, 1371 (2009); https://doi.org/10.1016/j.jhazmat.2008.06.017.
X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun and C. Sun, Chem. Eng. J., 183, 238 (2012); https://doi.org/10.1016/j.cej.2011.12.068.
J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang and K.V. Rao, Prog. Mater. Sci., 58, 874 (2013); https://doi.org/10.1016/j.pmatsci.2013.03.002.
K.K. Kim, N. Koguchi, Y.W. Ok, T.-Y. Seong and S.-J. Park, Appl. Phys. Lett., 84, 3810 (2004); https://doi.org/10.1063/1.1741030.
C. Jagadish and S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, Elsevier (2011).
J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li and Z.L. Dong, Appl. Phys. Lett., 88, 233106 (2006); https://doi.org/10.1063/1.2210078.
M. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater., 133, 226 (2006); https://doi.org/10.1016/j.jhazmat.2005.10.022.
K.S. Mahavdeva, Ph. D. Thesis, Department of Material Science and Engineering, KTH-The Royal Institute of Technology, Stockhom, Sweden (2013).
T.A. Arun, D.K. Chacko, A.A. Madhavan, T.G. Deepak, G.S. Anjusree, T. Sara, S. Ramakrishna, S.V. Nair and A. Nair, RSC Adv., 4, 1421 (2014); https://doi.org/10.1039/C3RA45021J.
R. Viswanatha, S. Sapra, S. Sen Gupta, B. Satpati, P.V. Satyam, B.N. Dev and D.D. Sarma, J. Phys. Chem. B, 108, 6303 (2004); https://doi.org/10.1021/jp049960o.
G.C.C. Yang and S.-W. Chan, J. Nanopart. Res., 11, 221 (2009); https://doi.org/10.1007/s11051-008-9423-y.
S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, A.K. Ray and B.K. Dutta, Chem. Eng. J., 153, 86 (2009); https://doi.org/10.1016/j.cej.2009.06.021.
T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song and S.L. Suib, Molecules, 21, 900 (2016); https://doi.org/10.3390/molecules21070900.
P.D. Tran, L. Xi, S.K. Batabyal, L.H. Wong, J. Barber and J.S. Chye Loo, Phys. Chem. Chem. Phys., 14, 11596 (2012); https://doi.org/10.1039/c2cp41450c.
H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH Verlag GmbH & Co. KGaA, p. 323 (2009).
S.K. Kansal and Prerna, Energy Environm. Focus, 2, 203 (2013); https://doi.org/10.1166/eef.2013.1054.
Q. Xu, S. Zhou and H. Schmidt, J. Alloys Compd., 487, 665 (2009); https://doi.org/10.1016/j.jallcom.2009.08.033.
R.S. Yadav, A.C. Pandey and S.S. Sanjaya, Chalcogenide Lett., 6, 233 (2009).
N. Riahi-Noori, R. Sarraf-Mamoory, P. Alizadeh and A. Mehdikhani, J. Ceram. Process. Res., 9, 246 (2008).
S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini and V. Sengodan, Mater. Sci. Semicond. Process., 11, 6 (2008); https://doi.org/10.1016/j.mssp.2008.04.005.
S. Ekambaram, Y. Iikubo and A. Kudo, J. Alloys Compd., 433, 237 (2007); https://doi.org/10.1016/j.jallcom.2006.06.045.
R. Ullah and J. Dutta, J. Hazard. Mater., 156, 194 (2008); https://doi.org/10.1016/j.jhazmat.2007.12.033.
J.M. Herrmann, Catal. Today, 53, 115 (1999); https://doi.org/10.1016/S0920-5861(99)00107-8.
T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, Int. J. Hydrogen Energy, 27, 991 (2002); https://doi.org/10.1016/S0360-3199(02)00022-8.
A.B. Djurisic, Y.H. Leung and A.M. Ching Ng, Mater. Horiz., 1, 400 (2014); https://doi.org/10.1039/c4mh00031e.
M.S. Birnie, S. Riffat and M. Gillott, Int. J. Low-Carbon Technol., 1, 47 (2006); https://doi.org/10.1093/ijlct/1.1.47.
P.S. Mukherjee and A.K. Ray, Chem. Eng. Technol., 22, 253 (1999); https://doi.org/10.1002/(SICI)1521-4125(199903)22:3<253::AIDCEAT253>3.0.CO;2-X.
R.W. Kelsall, I.W. Hamley and M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, West Sussex (2005).
T.L. Tan, C.W. Lai and S.B. Abd Hamid, J. Nanomater., ID 371720 (2014); https://doi.org/10.1155/2014/371720.
S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang and S.J. Chua, J. Appl. Phys., 98, 013505 (2005); https://doi.org/10.1063/1.1940137.
T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma and M. Kawasaki, Appl. Phys. Lett., 75, 3366 (1999); https://doi.org/10.1063/1.125353.
S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee and S. Cho, Appl. Phys. Lett., 80, 4561 (2002); https://doi.org/10.1063/1.1487927.
S.V. Bhat and F.L. Deepak, Solid State Commun., 135, 345 (2005); https://doi.org/10.1016/j.ssc.2005.05.051.
F. Djouider and A. Hussain, J. Hazard. Mater., 276, 19 (2014); https://doi.org/10.1016/j.jhazmat.2014.05.004.