Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Determination of Various Properties of Ethyl Actetate + n-Butanol Binary Mixture at Different Temperatures
Corresponding Author(s) : Soujanya Kaki
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
The present study deals with the variations of ultrasonic velocity, density, viscosity, various acoustic and thermodynamic parameters such as adiabatic compressibility, intermolecular free length, molar volume, acoustic impedance, free volume, internal pressure, enthalpy and also excess thermodynamic properties for n-butanol with ethyl acetate as function of concentration and temperature. All the excess parameters are fitted into the Redlich-Kister equation. And also to compare the ultrasonic sound velocity in ethyl acetate with n-butanol mixture from various theoretical relations of Nomoto and Van Dael Vangeel . These properties can be effectively utilized as a qualitative study to predict the extent of molecular interactions between the components.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Müller and J. Winkelmann, Phys. Rev. E, 59, 2026 (1999); https://doi.org/10.1103/PhysRevE.59.2026.
- A. Bagheri and S.A. Mirbakhshi, Phys. Chem. Liq., 54, 529 (2016); https://doi.org/10.1080/00319104.2015.1121783.
- D. Belmonte, C. Gatti, G. Ottonello, P. Richet and M. Vetuschi Zuccolini, J. Phys. Chem. A, 120, 8881 (2016); https://doi.org/10.1021/acs.jpca.6b08676.
- Z. Chen, Y. Huo, P. Long, H. Shen and J.M. Lee, Phys. Chem. Chem. Phys., 19, 5389 (2017); https://doi.org/10.1039/c6cp08876g.
- P. Prabhu and A.R. Venis, Asian J. Chem., 30, 1759 (2018); https://doi.org/10.14233/ajchem.2018.21292.
- R.H. Perry and D.W. Green, Perry's Chemical Engineers' Handbook McGraw-Hill: New York, edn 7, pp. 13-20 (1997).
- J.H. Hildebrand and R.L. Scott, Regular Solutions, Prentice-Hall: New York, pp. 104-115 (1962).
- G. Scatchard, Chem. Rev., 8, 321 (1931); https://doi.org/10.1021/cr60030a010.
- J.H. Hildebrand and C.A. Jenks, J. Am. Chem. Soc., 42, 2080 (1920); https://doi.org/10.1021/ja01455a015.
- J.H. Hildebrand, J. Am. Chem. Soc., 51, 66 (1929); https://doi.org/10.1021/ja01376a009.
- J.H. Hildebrand, Phys. Rev., 34, 984 (1929); https://doi.org/10.1103/PhysRev.34.984.
- J.H. Hildebrand, Proc. Nat. Acad. Sci., 13, 267 (1927); https://doi.org/10.1073/pnas.13.5.267.
- O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
- M.R. Rao, J. Chem. Phys., 9, 682 (1941); https://doi.org/10.1063/1.1750976.
- T. Jacobson, Phys. Rev. Lett., 75, 1260 (1995); https://doi.org/10.1103/PhysRevLett.75.1260.
- R. Padmanaban, K. Venkatramanan, S. Girivel, K. Kasthuri, A. Usharani, A. Gayathri and R. Vellaichamy, ed.: J. Ebenezar, Mathematical and Experimental Analysis of Ultrasound Velocity and Refractive Index in Binary Mixtures of Pharmaceutically Important Polymer-PEG 600; In: Recent Trends in Materials Science and Applications, Springer International Publishing: Switzerland, pp: 709-722 (2017).
- V.S. Rao, T.V. Krishna, T.M. Mohan and P.M. Rao, J. Solution Chem., 46, 281 (2017); https://doi.org/10.1007/s10953-017-0578-y.
- A. Saini, A. Harshvardhan and R. Dey, Indian J. Chem., 51A, 21 (2012).
- J.O. Hirschfelder, Hirschfelder, J.O., Molecular Theory of Gases and Liquids, John Wiley, New York, p. 29 & 286 (1959).
- J.O. Hirschfelder, J. Chem. Educ., 16, 540 (1939); https://doi.org/10.1021/ed016p540.
- A. Schmidt, M. Zad, W.E. Acree Jr. and M.H. Abraham, Phys. Chem. Liq., 54, 313 (2016); https://doi.org/10.1080/00319104.2015.1084882.
- R. Sharma, R.C. Thakur and B. Saini, Asian J. Chem., 28, 2331 (2016); https://doi.org/10.14233/ajchem.2016.20010.
- I.A. Sedov, T.I. Magsumov, M.A. Stolov and B.N. Solomonov, Thermochim. Acta, 623, 9 (2016); https://doi.org/10.1016/j.tca.2015.11.010.
- J.P. Singh and R. Sharma, Int. J. Eng. Res. Dev., 5, 48 (2013).
- J. Tong, Y. Qu, K. Li, T.-F. Chen, J. Tong and J.-Z. Yang, J. Chem. Thermodyn., 97, 362 (2016); https://doi.org/10.1016/j.jct.2016.02.001.
- Y. Xu, H. Zhu and L. Yang, J. Chem. Eng. Data, 58, 2260 (2013); https://doi.org/10.1021/je400331r.
- L. Venkatramana, R.L. Gardas, C.N. Rao, K. Sivakumar and K.D. Reddy, J. Sol. Chem., 44, 327 (2015); https://doi.org/10.1007/s10953-015-0309-1.
- R.R. Naik, S.V. Bawankar, P.V. Tekade and O.A. Mahodaya, Russ. J. Phys. Chem. A, 89, 152 (2015); https://doi.org/10.1134/S0036024415010227.
- R. Mehra and B.B. Malav, Arabian J. Chem., 10, S1894 (2017); https://doi.org/10.1016/j.arabjc.2013.07.018.
- B. Kubíková, M. Boèa, J. Mlynáriková, Z. Netriová and Z. Vasková, J. Thermal Anal. Calorim., 125, 497 (2016); https://doi.org/10.1007/s10973-016-5324-y.
- K. Saravanakumar, T.G. Lavanya and T.R. Kubendran, J. Eng. Thermophys., 25, 106 (2016); https://doi.org/10.1134/S1810232816020144.
- Y. Wang, Q. Liu, L. Qiu, T. Wang, H. Yuan, J. Lin and S. Luo, Spectrochim. Acta A: Mol. Bimol. Spectrosc., 150, 902 (2015); https://doi.org/10.1016/j.saa.2015.06.027.
- F. Chen, Z. Yang, Z. Chen, J. Hu, C. Chen and J. Cai, J. Mol. Liq., 209, 683 (2015); https://doi.org/10.1016/j.molliq.2015.06.041.
- R. Padmanaban, K. Venkatramanan, S. Girivel, K. Kasthuri, A. Usharani, A. Gayathri and R. Vellaichamy, Recent Trends Mater. Sci. Appl., 189, 709 (2017); https://doi.org/10.1007/978-3-319-44890-9_57.
References
O. Müller and J. Winkelmann, Phys. Rev. E, 59, 2026 (1999); https://doi.org/10.1103/PhysRevE.59.2026.
A. Bagheri and S.A. Mirbakhshi, Phys. Chem. Liq., 54, 529 (2016); https://doi.org/10.1080/00319104.2015.1121783.
D. Belmonte, C. Gatti, G. Ottonello, P. Richet and M. Vetuschi Zuccolini, J. Phys. Chem. A, 120, 8881 (2016); https://doi.org/10.1021/acs.jpca.6b08676.
Z. Chen, Y. Huo, P. Long, H. Shen and J.M. Lee, Phys. Chem. Chem. Phys., 19, 5389 (2017); https://doi.org/10.1039/c6cp08876g.
P. Prabhu and A.R. Venis, Asian J. Chem., 30, 1759 (2018); https://doi.org/10.14233/ajchem.2018.21292.
R.H. Perry and D.W. Green, Perry's Chemical Engineers' Handbook McGraw-Hill: New York, edn 7, pp. 13-20 (1997).
J.H. Hildebrand and R.L. Scott, Regular Solutions, Prentice-Hall: New York, pp. 104-115 (1962).
G. Scatchard, Chem. Rev., 8, 321 (1931); https://doi.org/10.1021/cr60030a010.
J.H. Hildebrand and C.A. Jenks, J. Am. Chem. Soc., 42, 2080 (1920); https://doi.org/10.1021/ja01455a015.
J.H. Hildebrand, J. Am. Chem. Soc., 51, 66 (1929); https://doi.org/10.1021/ja01376a009.
J.H. Hildebrand, Phys. Rev., 34, 984 (1929); https://doi.org/10.1103/PhysRev.34.984.
J.H. Hildebrand, Proc. Nat. Acad. Sci., 13, 267 (1927); https://doi.org/10.1073/pnas.13.5.267.
O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
M.R. Rao, J. Chem. Phys., 9, 682 (1941); https://doi.org/10.1063/1.1750976.
T. Jacobson, Phys. Rev. Lett., 75, 1260 (1995); https://doi.org/10.1103/PhysRevLett.75.1260.
R. Padmanaban, K. Venkatramanan, S. Girivel, K. Kasthuri, A. Usharani, A. Gayathri and R. Vellaichamy, ed.: J. Ebenezar, Mathematical and Experimental Analysis of Ultrasound Velocity and Refractive Index in Binary Mixtures of Pharmaceutically Important Polymer-PEG 600; In: Recent Trends in Materials Science and Applications, Springer International Publishing: Switzerland, pp: 709-722 (2017).
V.S. Rao, T.V. Krishna, T.M. Mohan and P.M. Rao, J. Solution Chem., 46, 281 (2017); https://doi.org/10.1007/s10953-017-0578-y.
A. Saini, A. Harshvardhan and R. Dey, Indian J. Chem., 51A, 21 (2012).
J.O. Hirschfelder, Hirschfelder, J.O., Molecular Theory of Gases and Liquids, John Wiley, New York, p. 29 & 286 (1959).
J.O. Hirschfelder, J. Chem. Educ., 16, 540 (1939); https://doi.org/10.1021/ed016p540.
A. Schmidt, M. Zad, W.E. Acree Jr. and M.H. Abraham, Phys. Chem. Liq., 54, 313 (2016); https://doi.org/10.1080/00319104.2015.1084882.
R. Sharma, R.C. Thakur and B. Saini, Asian J. Chem., 28, 2331 (2016); https://doi.org/10.14233/ajchem.2016.20010.
I.A. Sedov, T.I. Magsumov, M.A. Stolov and B.N. Solomonov, Thermochim. Acta, 623, 9 (2016); https://doi.org/10.1016/j.tca.2015.11.010.
J.P. Singh and R. Sharma, Int. J. Eng. Res. Dev., 5, 48 (2013).
J. Tong, Y. Qu, K. Li, T.-F. Chen, J. Tong and J.-Z. Yang, J. Chem. Thermodyn., 97, 362 (2016); https://doi.org/10.1016/j.jct.2016.02.001.
Y. Xu, H. Zhu and L. Yang, J. Chem. Eng. Data, 58, 2260 (2013); https://doi.org/10.1021/je400331r.
L. Venkatramana, R.L. Gardas, C.N. Rao, K. Sivakumar and K.D. Reddy, J. Sol. Chem., 44, 327 (2015); https://doi.org/10.1007/s10953-015-0309-1.
R.R. Naik, S.V. Bawankar, P.V. Tekade and O.A. Mahodaya, Russ. J. Phys. Chem. A, 89, 152 (2015); https://doi.org/10.1134/S0036024415010227.
R. Mehra and B.B. Malav, Arabian J. Chem., 10, S1894 (2017); https://doi.org/10.1016/j.arabjc.2013.07.018.
B. Kubíková, M. Boèa, J. Mlynáriková, Z. Netriová and Z. Vasková, J. Thermal Anal. Calorim., 125, 497 (2016); https://doi.org/10.1007/s10973-016-5324-y.
K. Saravanakumar, T.G. Lavanya and T.R. Kubendran, J. Eng. Thermophys., 25, 106 (2016); https://doi.org/10.1134/S1810232816020144.
Y. Wang, Q. Liu, L. Qiu, T. Wang, H. Yuan, J. Lin and S. Luo, Spectrochim. Acta A: Mol. Bimol. Spectrosc., 150, 902 (2015); https://doi.org/10.1016/j.saa.2015.06.027.
F. Chen, Z. Yang, Z. Chen, J. Hu, C. Chen and J. Cai, J. Mol. Liq., 209, 683 (2015); https://doi.org/10.1016/j.molliq.2015.06.041.
R. Padmanaban, K. Venkatramanan, S. Girivel, K. Kasthuri, A. Usharani, A. Gayathri and R. Vellaichamy, Recent Trends Mater. Sci. Appl., 189, 709 (2017); https://doi.org/10.1007/978-3-319-44890-9_57.