Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Activity of Carbon Nanotubes Synthesized by Flame Fragments Deposition Method and Its Composites with TiO2
Corresponding Author(s) : Falah H. Hussein
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
The photocatalytic activity of carbon nanotubes (CNTs) synthesized by flame fragments deposition (FFD) and CNTs/TiO2 composites was determined by their application on the photocatalytic degradation of cobalamin dye. Different ratios of composites consisting of carbon nanotubes with titanium dioxide nanoparticles anatase were prepared using a simple, low temperature process in which carbon nanotubes and anatase nanoparticles were dispersed in water. The ratios that used in the present work were, 25:1, 50:1, 75:1 and 100:1 from theTiO2 (30 nm)/CNTs. The structures of different TiO2/CNT composites were characterized by Raman spectroscopy, X-ray diffraction, FTIR spectroscopy and atomic force microscopy. The photocatalytic activity of these materials was investigated by following the photocatalytic removal of cobalamin dye over these prepared materials. The obtained results showed an increment in the efficiency of cobalamin dye removal over TiO2/CNTs composites in comparison with neat components TiO2 and carbon nanotubes under the same reaction condition. The photocatalytic removal of cobalamin dye from aqueous solution over TiO2/CNTs composites was followed spectrophotometrically by measuring absorbance of the dye solution at 550 nm. The efficiency of cobalamin dye removal over neat components and composites falls in the following order: 50:1 > 75:1 > 100:1 > 25:1 > CNTs > TiO2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar and A. Al-Warthan, Arab. J. Chem., 5, 1 (2012); https://doi.org/10.1016/j.arabjc.2010.08.022.
- C. Liu and H.-M. Cheng, Mater. Today, 16, 19 (2013); https://doi.org/10.1016/j.mattod.2013.01.019.
- E. Del Canto, K. Flavin, D. Movia, C. Navio, C. Bittencourt and S. Giordani, Chem. Mater., 23, 67 (2011); https://doi.org/10.1021/cm101978m.
- P. Mahalingam, B. Parasuram, T. Maiyalagan and S. Sundaram, J. Environ. Nanotechnol., 1, 53 (2012).
- V.N. Popov, Mater. Sci. Eng., 43, 61 (2004); https://doi.org/10.1016/j.mser.2003.10.001.
- T.-J. Park, S. Banerjee, T. Hemraj-Benny and S.S. Wong, J. Mater. Chem., 16, 141 (2006); https://doi.org/10.1039/B510858F.
- G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang and M. Yang, J. Mater. Sci., 42, 7162 (2007); https://doi.org/10.1007/s10853-007-1609-7.
- K.D. Shitole, R.K. Nainani and P. Thakur, Def. Sci. J., 63, 435 (2013); https://doi.org/10.14429/dsj.63.4870.
- H. Chen, S. Yang, K. Yu, Y. Ju and C. Sun, J. Phys. Chem., 115, 3034 (2011); https://doi.org/10.1021/jp109948n.
- N. Bouazza, M. Ouzzine, M.A. Lillo-Rodenas, D. Eder and A. LinaresSolano, Appl. Catal. B, 92, 377 (2009); https://doi.org/10.1016/j.apcatb.2009.08.017.
- R. Leary and A. Westwood, Carbon, 49, 741 (2011); https://doi.org/10.1016/j.carbon.2010.10.010.
- W. Wang, P. Serp, P. Kalck, C.G. Silva and J.L. Faria, Mater. Res. Bull., 43, 958 (2008); https://doi.org/10.1016/j.materresbull.2007.04.032.
- M.-L. Chen, F.-J. Zhang and W.-C. Oh, New Carbon Mater., 24, 159 (2009); https://doi.org/10.1016/S1872-5805(08)60045-1.
- K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009); https://doi.org/10.1002/adma.200802738.
- M. Alsawat, T. Altalhi, K. Gulati, A. Santos and D. Losic, ACS Appl. Mater. Interfaces, 7, 28361 (2015); https://doi.org/10.1021/acsami.5b08956.
- J. Safari and S. Gandomi-Ravandi, J. Mol. Struct., 1065-1066, 241 (2014); https://doi.org/10.1016/j.molstruc.2014.02.035.
- M.H. Rümmeli, A. Bachmatiuk, F. Börrnert, F. Schäffel, I. Ibrahim, K. Cendrowski, G. Simha-Martynkova, D. Plachá, E. Borowiak-Palen, G. Cuniberti and B. Büchner, Nanoscale Res. Lett., 6, 303 (2011); https://doi.org/10.1186/1556-276X-6-303.
- B. Liu, S. Lyu, S. Jung, H. Kang, C. Yang, J. Park, C. Park and C. Lee, Chem. Phys. Lett., 383, 104 (2004); https://doi.org/10.1016/j.cplett.2003.10.134.
- A.M. Kamil, F.H. Hussein, A.F. Halbus and D.W. Bahnemann, Int. J. Photoenergy, Article ID 475713 (2014); https://doi.org/10.1155/2014/475713.
- M. Ahmed, H.M.N. Iqbal and Z. Akram, Arab. J. Sci. Eng., 43, 23 (2018); https://doi.org/10.1007/s13369-017-2662-4.
- A.M. Jassm, F.H. Hussein, F.H. Abdulrazzak, A.F. Alkaim and B.A. Joda, Asian J. Chem., 29, 2804 (2017); https://doi.org/10.14233/ajchem.2017.20994.
- B. Czech, P. Oleszczuk and A. Wiacek, Environ. Pollut., 200, 161 (2015); https://doi.org/10.1016/j.envpol.2015.02.020.
- N.I. Kovtyukhova, T.E. Mallouk, L. Pan and E.C.J. Dickey, J. Am. Chem. Soc., 125, 9761 (2003); https://doi.org/10.1021/ja0344516.
- Y. Yao, G. Li, S. Ciston, R.M. Lueptow and K.A. Gray, Sci. Technol., 42, 4952 (2008); https://doi.org/10.1021/es800191n.
References
A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar and A. Al-Warthan, Arab. J. Chem., 5, 1 (2012); https://doi.org/10.1016/j.arabjc.2010.08.022.
C. Liu and H.-M. Cheng, Mater. Today, 16, 19 (2013); https://doi.org/10.1016/j.mattod.2013.01.019.
E. Del Canto, K. Flavin, D. Movia, C. Navio, C. Bittencourt and S. Giordani, Chem. Mater., 23, 67 (2011); https://doi.org/10.1021/cm101978m.
P. Mahalingam, B. Parasuram, T. Maiyalagan and S. Sundaram, J. Environ. Nanotechnol., 1, 53 (2012).
V.N. Popov, Mater. Sci. Eng., 43, 61 (2004); https://doi.org/10.1016/j.mser.2003.10.001.
T.-J. Park, S. Banerjee, T. Hemraj-Benny and S.S. Wong, J. Mater. Chem., 16, 141 (2006); https://doi.org/10.1039/B510858F.
G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang and M. Yang, J. Mater. Sci., 42, 7162 (2007); https://doi.org/10.1007/s10853-007-1609-7.
K.D. Shitole, R.K. Nainani and P. Thakur, Def. Sci. J., 63, 435 (2013); https://doi.org/10.14429/dsj.63.4870.
H. Chen, S. Yang, K. Yu, Y. Ju and C. Sun, J. Phys. Chem., 115, 3034 (2011); https://doi.org/10.1021/jp109948n.
N. Bouazza, M. Ouzzine, M.A. Lillo-Rodenas, D. Eder and A. LinaresSolano, Appl. Catal. B, 92, 377 (2009); https://doi.org/10.1016/j.apcatb.2009.08.017.
R. Leary and A. Westwood, Carbon, 49, 741 (2011); https://doi.org/10.1016/j.carbon.2010.10.010.
W. Wang, P. Serp, P. Kalck, C.G. Silva and J.L. Faria, Mater. Res. Bull., 43, 958 (2008); https://doi.org/10.1016/j.materresbull.2007.04.032.
M.-L. Chen, F.-J. Zhang and W.-C. Oh, New Carbon Mater., 24, 159 (2009); https://doi.org/10.1016/S1872-5805(08)60045-1.
K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009); https://doi.org/10.1002/adma.200802738.
M. Alsawat, T. Altalhi, K. Gulati, A. Santos and D. Losic, ACS Appl. Mater. Interfaces, 7, 28361 (2015); https://doi.org/10.1021/acsami.5b08956.
J. Safari and S. Gandomi-Ravandi, J. Mol. Struct., 1065-1066, 241 (2014); https://doi.org/10.1016/j.molstruc.2014.02.035.
M.H. Rümmeli, A. Bachmatiuk, F. Börrnert, F. Schäffel, I. Ibrahim, K. Cendrowski, G. Simha-Martynkova, D. Plachá, E. Borowiak-Palen, G. Cuniberti and B. Büchner, Nanoscale Res. Lett., 6, 303 (2011); https://doi.org/10.1186/1556-276X-6-303.
B. Liu, S. Lyu, S. Jung, H. Kang, C. Yang, J. Park, C. Park and C. Lee, Chem. Phys. Lett., 383, 104 (2004); https://doi.org/10.1016/j.cplett.2003.10.134.
A.M. Kamil, F.H. Hussein, A.F. Halbus and D.W. Bahnemann, Int. J. Photoenergy, Article ID 475713 (2014); https://doi.org/10.1155/2014/475713.
M. Ahmed, H.M.N. Iqbal and Z. Akram, Arab. J. Sci. Eng., 43, 23 (2018); https://doi.org/10.1007/s13369-017-2662-4.
A.M. Jassm, F.H. Hussein, F.H. Abdulrazzak, A.F. Alkaim and B.A. Joda, Asian J. Chem., 29, 2804 (2017); https://doi.org/10.14233/ajchem.2017.20994.
B. Czech, P. Oleszczuk and A. Wiacek, Environ. Pollut., 200, 161 (2015); https://doi.org/10.1016/j.envpol.2015.02.020.
N.I. Kovtyukhova, T.E. Mallouk, L. Pan and E.C.J. Dickey, J. Am. Chem. Soc., 125, 9761 (2003); https://doi.org/10.1021/ja0344516.
Y. Yao, G. Li, S. Ciston, R.M. Lueptow and K.A. Gray, Sci. Technol., 42, 4952 (2008); https://doi.org/10.1021/es800191n.