Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Degradation of Phenol Red by Using New Spinel-Type Co1-xCdxFe2O4 Nanocomposites
Corresponding Author(s) : Assel A. Hadi
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
The investigation of synthesis of the spinel Co1-xCdxFe2O4 photocatalyst by co-precipitation method at various proportions of (x = 0.2:0.8, 0.5:0.5, 0.8:0.2) and calcinations at temperature 600 ºC for 3 h. The synthesized powder was characterized by X-ray diffraction, FT-IR, UV-visible spectroscopy, SEM, EDS, AFM and HPLC. The photocatalytic activity was estimated under high pressure mercury lamp OSRAM (125) watts for degradation phenol red solution at the wavelength of λmax 432 nm. The conclusion demonstrated that (0.5:0.5) rate at 600 ºC has high action than other proportion at various temperature. After this examination, a few measures, for example, better of mass for the catalyst, initial of concentration for spinel Co1-xCdxFe2O4, effect of pH and effect of temperature. The X-ray and electron microscopy studies showed an average size of the granules prepared for the composite in this manner (18.16-39.64). The electrical characteristics (L.C.R) were additionally examined for all the spinels. Cadmium alone was an electrical insulator but by adding cobalt with iron it turned into a semiconductor of an electric current.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Xu, Y. Wei, Y. Liu, X. Ji, L. Yang and M. Gu, Solid State Sci., 11, 472 (2009); https://doi.org/10.1016/j.solidstatesciences.2008.07.004.
- M.B. Tian, Magnetic Material, Tsinghua University Press: Beijing (2001).
- A. Baykal, N. Kasapoglu, Y. Köseoglu, M.S. Toprak and H. Bayrakdar, J. Alloys Compd., 464, 514 (2008); https://doi.org/10.1016/j.jallcom.2007.10.041.
- A. Goldman, Modern Ferrite Technology, Marcel Dekker: New York (1993).
- A. Alarifi, N.M. Deraz and S. Shaban, J. Alloys Compd., 486, 501 (2009); https://doi.org/10.1016/j.jallcom.2009.06.192.
- M. Flores-Acosta, M. Sotelo-Lerma, H. Arizpe-Chavez, F.F. CastillonBarraza and R.J. Ramirez-Bon, Solid State Commun., 128, 407 (2003); https://doi.org/10.1016/j.ssc.2003.09.008.
- P. Pulisová, J. Kovác, A. Voigt and P. Raschman, J. Magn. Magn. Mater., 341, 93 (2013); https://doi.org/10.1016/j.jmmm.2013.04.003.
- M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar and M.A. Khan, Curr. Appl. Phys., 14, 716 (2014); https://doi.org/10.1016/j.cap.2014.02.021.
- L.S. Jan, S. Radiman, M.A. Siddig, S.V. Muniandy, M.A. Hamid and H.D. Jamali, Colloids Surf. A Physicochem. Eng. Asp., 251, 43 (2004); https://doi.org/10.1016/j.colsurfa.2004.09.025.
- D.S. Mathew and R.-S. Juang, Chem. Eng. J., 129, 51 (2007); https://doi.org/10.1016/j.cej.2006.11.001.
- S. Rahman, K. Nadeem, M. Anis-ur-Rehman, M. Mumtaz, S. Naeem and I. Letofsky-Papst, Ceram. Int., 39, 5235 (2013); https://doi.org/10.1016/j.ceramint.2012.12.023.
- A. Pradeep, P. Priyadharsini and G. Chandrasekaran, J. Magn. Magn. Mater., 320, 2774 (2008); https://doi.org/10.1016/j.jmmm.2008.06.012.
- N.N. Greenwood and A. Earnshaw, Chemistry of the Elements; Pergamon Press Ltd., Oxford, p. 279 (1984).
- Y. Ichiyanagi, M. Kubota, S. Moritake, Y. Kanazawa, T. Yamada and T. Uehashi, J. Magn. Magn. Mater., 310, 2378 (2007); https://doi.org/10.1016/j.jmmm.2006.10.737.
- K.P. Thummer, M.C. Chhantbar, K.B. Modi, G.J. Baldha and H.H. Joshi, J. Magn. Magn. Mater., 280, 23 (2004); https://doi.org/10.1016/j.jmmm.2004.02.017.
- M.I.M. Omer, A.A. Elbadawi and O.A. Yassin, J. Appl. Ind. Sci., 1, 20 (2013).
- R. Ali, M.A. Khan, A. Mahmood, A.H. Chughtai, A. Sultan, M. Shahid, M. Ishaq and M.F. Warsi, Ceram. Int., 40, 3841 (2014); https://doi.org/10.1016/j.ceramint.2013.08.024.
- V.K. Mittal, P. Chandramohan, S. Bera, M.P. Srinivasan, S. Velmurugan and S.V. Narasimhan, Solid State Commun., 137, 6 (2006); https://doi.org/10.1016/j.ssc.2005.10.019.
- S. Dey, A. Roy, D. Das and J. Ghose, J. Magn. Magn. Mater., 270, 224 (2004); https://doi.org/10.1016/j.jmmm.2003.08.024.
- P. Priyadharsini, A. Pradeep, P.S. Rao and G. Chandrasekaran, Mater. Chem. Phys., 116, 207 (2009); https://doi.org/10.1016/j.matchemphys.2009.03.011.
- P.P. Hankare, R.P. Patil, A.V. Jadhav, R.S. Pandav, K.M. Garadkar, R. Sasikala and A.K. Tripathi, J. Alloys Compd., 509, 2160 (2011); https://doi.org/10.1016/j.jallcom.2010.10.173.
- M.E. Sánchez-Vergara, J.C. Alonso-Huitron, A. Rodriguez-Gómez and J.N. Reider-Burstin, Molecules, 17, 10000 (2012); https://doi.org/10.3390/molecules170910000.
- K. Rahna, Indian J. Eng. Mater. Sci., 13, 62 (2006).
- G.M. Tsangaris, G.C. Psarras and G.M. Tsangaris, J. Mater. Sci., 33, 2027 (1998); https://doi.org/10.1023/A:1004398514901.
- G.C. Psarras, K.G. Gatos, P.K. Karahaliou, S.N. Georga, C.A. Krontiras and J. Karger-Kocsis, Express Polym. Lett., 1, 837 (2007); https://doi.org/10.3144/expresspolymlett.2007.116.
- K. Chang, S. Cheng, Y. Chen, H. Huang and J. Liou, J. Microbiol. Immunol. Infect., 46, 405 (2013); https://doi.org/10.1016/j.jmii.2012.08.004.
- P. West, Atomic Force Microscopy, United States by Oxford University Press Inc.: New York, edn 1 (2010).
- M.J. Doktycz, C.J. Sullivan, P.R. Hoyt, D.A. Pelletier, S. Wu and D.P. Allison, Ultramicroscopy, 97, 209 (2003); https://doi.org/10.1016/S0304-3991(03)00045-7.
- Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita and O. Custance, Nature, 446, 64 (2007); https://doi.org/10.1038/nature05530.
- Y. Ni, X. Ge, Z. Zhang, H. Liu, Z. Zhu and Q. Ye, Mater. Res. Bull., 36, 2383 (2001); https://doi.org/10.1016/S0025-5408(01)00739-5.
- S.J. Wilson, J. Solid State Chem., 30, 247 (1979); https://doi.org/10.1016/0022-4596(79)90106-3.
- S. Kuboon and Y.H. Hu, Ind. Eng. Chem. Res., 50, 2015 (2011); https://doi.org/10.1021/ie101249r.
- S. Thirumalairajan, K. Girija, N.Y. Hebalkar, D. Mangalaraj, C. Viswanathan and N. Ponpandian, RSC Adv., 3, 7549 (2013); https://doi.org/10.1039/c3ra00006k.
- Y. Chen, Y. Zhang, C. Liu, A. Lu and W. Zhang, Int. J. Photoenergy, Article ID 510158 (2012); https://doi.org/10.1155/2012/510158.
- L. Yong, G. Zhanqi, J. Yuefei, H. Xiaobin, S. Cheng, Y. Shaogui, W. Lianhong, W. Qingeng and F. Die, J. Hazard. Mater., 285, 127 (2015); https://doi.org/10.1016/j.jhazmat.2014.11.041.
- S. Ahmed, M.G. Rasul, R. Brown and M.A. Hashib, J. Environ. Manage., 92, 311 (2011); https://doi.org/10.1016/j.jenvman.2010.08.028.
- L.-P. Zhu, G.-H. Liao, W.-Y. Huang, L.-L. Ma, Y. Yang, Y. Yu and S.-Y. Fu, Mater. Sci. Eng.: B, 163, 194 (2009); https://doi.org/10.1016/j.mseb.2009.05.021.
References
Q. Xu, Y. Wei, Y. Liu, X. Ji, L. Yang and M. Gu, Solid State Sci., 11, 472 (2009); https://doi.org/10.1016/j.solidstatesciences.2008.07.004.
M.B. Tian, Magnetic Material, Tsinghua University Press: Beijing (2001).
A. Baykal, N. Kasapoglu, Y. Köseoglu, M.S. Toprak and H. Bayrakdar, J. Alloys Compd., 464, 514 (2008); https://doi.org/10.1016/j.jallcom.2007.10.041.
A. Goldman, Modern Ferrite Technology, Marcel Dekker: New York (1993).
A. Alarifi, N.M. Deraz and S. Shaban, J. Alloys Compd., 486, 501 (2009); https://doi.org/10.1016/j.jallcom.2009.06.192.
M. Flores-Acosta, M. Sotelo-Lerma, H. Arizpe-Chavez, F.F. CastillonBarraza and R.J. Ramirez-Bon, Solid State Commun., 128, 407 (2003); https://doi.org/10.1016/j.ssc.2003.09.008.
P. Pulisová, J. Kovác, A. Voigt and P. Raschman, J. Magn. Magn. Mater., 341, 93 (2013); https://doi.org/10.1016/j.jmmm.2013.04.003.
M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar and M.A. Khan, Curr. Appl. Phys., 14, 716 (2014); https://doi.org/10.1016/j.cap.2014.02.021.
L.S. Jan, S. Radiman, M.A. Siddig, S.V. Muniandy, M.A. Hamid and H.D. Jamali, Colloids Surf. A Physicochem. Eng. Asp., 251, 43 (2004); https://doi.org/10.1016/j.colsurfa.2004.09.025.
D.S. Mathew and R.-S. Juang, Chem. Eng. J., 129, 51 (2007); https://doi.org/10.1016/j.cej.2006.11.001.
S. Rahman, K. Nadeem, M. Anis-ur-Rehman, M. Mumtaz, S. Naeem and I. Letofsky-Papst, Ceram. Int., 39, 5235 (2013); https://doi.org/10.1016/j.ceramint.2012.12.023.
A. Pradeep, P. Priyadharsini and G. Chandrasekaran, J. Magn. Magn. Mater., 320, 2774 (2008); https://doi.org/10.1016/j.jmmm.2008.06.012.
N.N. Greenwood and A. Earnshaw, Chemistry of the Elements; Pergamon Press Ltd., Oxford, p. 279 (1984).
Y. Ichiyanagi, M. Kubota, S. Moritake, Y. Kanazawa, T. Yamada and T. Uehashi, J. Magn. Magn. Mater., 310, 2378 (2007); https://doi.org/10.1016/j.jmmm.2006.10.737.
K.P. Thummer, M.C. Chhantbar, K.B. Modi, G.J. Baldha and H.H. Joshi, J. Magn. Magn. Mater., 280, 23 (2004); https://doi.org/10.1016/j.jmmm.2004.02.017.
M.I.M. Omer, A.A. Elbadawi and O.A. Yassin, J. Appl. Ind. Sci., 1, 20 (2013).
R. Ali, M.A. Khan, A. Mahmood, A.H. Chughtai, A. Sultan, M. Shahid, M. Ishaq and M.F. Warsi, Ceram. Int., 40, 3841 (2014); https://doi.org/10.1016/j.ceramint.2013.08.024.
V.K. Mittal, P. Chandramohan, S. Bera, M.P. Srinivasan, S. Velmurugan and S.V. Narasimhan, Solid State Commun., 137, 6 (2006); https://doi.org/10.1016/j.ssc.2005.10.019.
S. Dey, A. Roy, D. Das and J. Ghose, J. Magn. Magn. Mater., 270, 224 (2004); https://doi.org/10.1016/j.jmmm.2003.08.024.
P. Priyadharsini, A. Pradeep, P.S. Rao and G. Chandrasekaran, Mater. Chem. Phys., 116, 207 (2009); https://doi.org/10.1016/j.matchemphys.2009.03.011.
P.P. Hankare, R.P. Patil, A.V. Jadhav, R.S. Pandav, K.M. Garadkar, R. Sasikala and A.K. Tripathi, J. Alloys Compd., 509, 2160 (2011); https://doi.org/10.1016/j.jallcom.2010.10.173.
M.E. Sánchez-Vergara, J.C. Alonso-Huitron, A. Rodriguez-Gómez and J.N. Reider-Burstin, Molecules, 17, 10000 (2012); https://doi.org/10.3390/molecules170910000.
K. Rahna, Indian J. Eng. Mater. Sci., 13, 62 (2006).
G.M. Tsangaris, G.C. Psarras and G.M. Tsangaris, J. Mater. Sci., 33, 2027 (1998); https://doi.org/10.1023/A:1004398514901.
G.C. Psarras, K.G. Gatos, P.K. Karahaliou, S.N. Georga, C.A. Krontiras and J. Karger-Kocsis, Express Polym. Lett., 1, 837 (2007); https://doi.org/10.3144/expresspolymlett.2007.116.
K. Chang, S. Cheng, Y. Chen, H. Huang and J. Liou, J. Microbiol. Immunol. Infect., 46, 405 (2013); https://doi.org/10.1016/j.jmii.2012.08.004.
P. West, Atomic Force Microscopy, United States by Oxford University Press Inc.: New York, edn 1 (2010).
M.J. Doktycz, C.J. Sullivan, P.R. Hoyt, D.A. Pelletier, S. Wu and D.P. Allison, Ultramicroscopy, 97, 209 (2003); https://doi.org/10.1016/S0304-3991(03)00045-7.
Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita and O. Custance, Nature, 446, 64 (2007); https://doi.org/10.1038/nature05530.
Y. Ni, X. Ge, Z. Zhang, H. Liu, Z. Zhu and Q. Ye, Mater. Res. Bull., 36, 2383 (2001); https://doi.org/10.1016/S0025-5408(01)00739-5.
S.J. Wilson, J. Solid State Chem., 30, 247 (1979); https://doi.org/10.1016/0022-4596(79)90106-3.
S. Kuboon and Y.H. Hu, Ind. Eng. Chem. Res., 50, 2015 (2011); https://doi.org/10.1021/ie101249r.
S. Thirumalairajan, K. Girija, N.Y. Hebalkar, D. Mangalaraj, C. Viswanathan and N. Ponpandian, RSC Adv., 3, 7549 (2013); https://doi.org/10.1039/c3ra00006k.
Y. Chen, Y. Zhang, C. Liu, A. Lu and W. Zhang, Int. J. Photoenergy, Article ID 510158 (2012); https://doi.org/10.1155/2012/510158.
L. Yong, G. Zhanqi, J. Yuefei, H. Xiaobin, S. Cheng, Y. Shaogui, W. Lianhong, W. Qingeng and F. Die, J. Hazard. Mater., 285, 127 (2015); https://doi.org/10.1016/j.jhazmat.2014.11.041.
S. Ahmed, M.G. Rasul, R. Brown and M.A. Hashib, J. Environ. Manage., 92, 311 (2011); https://doi.org/10.1016/j.jenvman.2010.08.028.
L.-P. Zhu, G.-H. Liao, W.-Y. Huang, L.-L. Ma, Y. Yang, Y. Yu and S.-Y. Fu, Mater. Sci. Eng.: B, 163, 194 (2009); https://doi.org/10.1016/j.mseb.2009.05.021.