Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study of Sigmatropic Rearrangement of Cycloprop-2-en-1-ol and its Fluorine Derivatives: Pericyclic or Pseudopericyclic Character from NICS and LLPE
Corresponding Author(s) : A. Sangeetha
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
Sigmatropic rearrangement reaction of cycloprop-2-en-1-ol and its fluorine derivatives has been studied theoretically in gas phase and its energy barrier has been calculated. Nucleus-independent chemical shift (NICS) shows sigmatropic rearrangement of cycloprop-2-en-1-ol is pericyclic in nature whereas fluorine derivatives show pseudopericyclic and pericyclic nature. Substitution of fluorine atom at ring is found to increase the energy barrier for –OH migration, while substitution at oxygen atom reduces the barrier. To know the involvement of lone pair of electrons during the reaction, lone pair electron present on oxygen atom is locked by hydrogen bonding. CR-CCSD(T)/6-311+G** levels are used to study the reactions more accurately.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms, Springer Science Business Media Inc.: New York (2000).
- R.B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry. Verlag-Chemie GmbG, Academic Press Inc.: Weinheim/Bergstr, edn 1 (1971).
- J.A. Ross, R.P. Seiders and D.M. Lemal, J. Am. Chem. Soc., 98, 4325 (1976); https://doi.org/10.1021/ja00430a060.
- D.M. Birney and P.E. Wagenseller, J. Am. Chem. Soc., 116, 6262 (1994); https://doi.org/10.1021/ja00093a028.
- D.M. Birney, S. Ham and G.R. Unruh, J. Am. Chem. Soc., 119, 4509 (1997); https://doi.org/10.1021/ja963551r.
- D.M. Birney, J. Am. Chem. Soc., 122, 10917 (2000); https://doi.org/10.1021/ja0020005.
- W.W. Shumway, N.K. Dalley and D.M. Birney, J. Org. Chem., 66, 5832 (2001); https://doi.org/10.1021/jo015698t.
- C. Zhou and D.M. Birney, J. Am. Chem. Soc., 124, 5231 (2002); https://doi.org/10.1021/ja017559z.
- L. Luo, M.D. Bartberger and W.R.J. Dolbier, J. Am. Chem. Soc., 119, 12366 (1997); https://doi.org/10.1021/ja972701a.
- W.M.F. Fabian, V.A. Bakulev and C.O. Kappe, J. Org. Chem., 63, 5801 (1998); https://doi.org/10.1021/jo980238u.
- W.M.F. Fabian, C.O. Kappe and V.A. Bakulev, J. Org. Chem., 65, 47 (2000); https://doi.org/10.1021/jo990997s.
- M. Alajarin, A. Vidal, P. Sanchez-Andrada, F. Tovar and G. Ochoa, Org. Lett., 2, 965 (2000); https://doi.org/10.1021/ol0056168.
- G. Rauhut, J. Org. Chem., 66, 5444 (2001); https://doi.org/10.1021/jo010307w.
- E. Chamorro, J. Chem. Phys., 118, 8687 (2003); https://doi.org/10.1063/1.1566740.
- J.J. Finnerty and C. Wentrup, J. Org. Chem., 69, 1909 (2004); https://doi.org/10.1021/jo035419x.
- M. Zora, J. Org. Chem., 69, 1940 (2004); https://doi.org/10.1021/jo035548d.
- J. Kalcher and W.M.F. Fabian, Theor. Chem. Acc., 109, 195 (2003); https://doi.org/10.1007/s00214-002-0410-6.
- E.E. Chamorro and R. Notario, J. Phys. Chem. A, 108, 4099 (2004); https://doi.org/10.1021/jp049847y.
- A.R. de Lera, R. Alvarez, B. Lecea, A. Torrado and F.P. Cossio, Angew. Chem. Int. Ed., 40, 557 (2001); https://doi.org/10.1002/1521-3773(20010202)40:3<557::AIDANIE557>3.0.CO;2-T.
- J.R. -Otero and E.M. Cabaleiro-Lago, Angew. Chem. Int. Ed., 41, 1147 (2002); https://doi.org/10.1002/1521-3773(20020402)41:7<1147::AIDANIE1147>3.0.CO;2-J.
- A.R. de Lera and F.P. Cossio, Angew. Chem. Int. Ed., 41, 1150 (2002); https://doi.org/10.1002/1521-3773(20020402)41:7<1150::AIDANIE1150>3.0.CO;2-M.
- J. Rodríguez-Otero and E.M. Cabaleiro-Lago, Chem. Eur. J., 9, 1837 (2003); https://doi.org/10.1002/chem.200390211.
- E. Matito, J. Poater, M. Duran and M. Sola, ChemPhysChem, 7, 111 (2006); https://doi.org/10.1002/cphc.200500446.
- H.E. Zimmerman, Acc. Chem. Res., 4, 272 (1971); https://doi.org/10.1021/ar50044a002.
- R. Herges, H. Jiao and P. von Ragué Schleyer, Angew. Chem. Int. Ed. Engl., 33, 1376 (1994); https://doi.org/10.1002/anie.199413761.
- H. Jiao and P.R. Schleyer, J. Phys. Org. Chem., 11, 655 (1998); https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U.
- M. Manoharan, F. De Proft and P. Geerlings, J. Org. Chem., 65, 7971 (2000); https://doi.org/10.1021/jo001156k.
- M. Manoharan, F. De Proft and P. Geerlings, J. Chem. Soc., Perkin Trans. 2, 8, 1767 (2000); https://doi.org/10.1039/b002344m.
- A.C. Tsipis, C.E. Kefalidis and C.A. Tsipis, J. Am. Chem. Soc., 130, 9144 (2008); https://doi.org/10.1021/ja802344z.
- A.C. Tsipis and C.A. Tsipis, J. Am. Chem. Soc., 125, 1136 (2003); https://doi.org/10.1021/ja028786j.
- C.A. Tsipis, E.E. Karagiannis, P.F. Kladou and A.C. Tsipis, J. Am. Chem. Soc., 126, 12916 (2004); https://doi.org/10.1021/ja0469277.
- C.S. Wannere, C. Corminboeuf, Z.-X. Wang, M.D. Wodrich, R.B. King and P.R. Schleyer, J. Am. Chem. Soc., 127, 5701 (2005); https://doi.org/10.1021/ja042716q.
- C. Corminboeuf, C.S. Wannere, D. Roy, R.B. King and P.R. Schleyer, Inorg. Chem., 45, 214 (2006); https://doi.org/10.1021/ic051576y.
- G.H. Zhang, Y.F. Zhao, J.I. Wu and P.R. Schleyer, Inorg. Chem., 48, 6773 (2009); https://doi.org/10.1021/ic900718t.
- Z. Chen, C. Corminboeuf, T. Heine, J. Bohmann and P.R. Schleyer, J. Am. Chem. Soc., 125, 13930 (2003); https://doi.org/10.1021/ja0361392.
- P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R. van Eikema Hommes, J. Am. Chem. Soc., 118, 6317 (1996); https://doi.org/10.1021/ja960582d.
- S. Jayaprakash, J. Jeevanandam and K. Subramani, J. Mol. Model., 20, 2494 (2014); https://doi.org/10.1007/s00894-014-2494-z.
- S. Jayaprakash, J. Jeevanandam, K. Subramani and A. Sangeetha, Comput. Theor. Chem., 1056, 52 (2015); https://doi.org/10.1016/j.comptc.2015.01.004.
- P. Piecuch, S.A. Kucharski, K. Kowalski and M. Musial, Comput. Phys. Commun., 149, 71 (2002); https://doi.org/10.1016/S0010-4655(02)00598-2.
- K. Kowalski and P. Piecuch, J. Chem. Phys., 113, 18 (2000); https://doi.org/10.1063/1.481769.
- K. Kowalski and P. Piecuch, J. Chem. Phys., 113, 5644 (2000); https://doi.org/10.1063/1.1290609.
- P.C. Alex Granovsky, GAMESS/Firefly version 7.1.F; http://classic.chem.msu.su/gran/gamess/index.html.
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112.
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc.: Wallingford CT (2004).
- R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Clarendon: Oxford (1990).
- F.P. Cossio, I. Morao, H.J. Jiao and P.R. Schleyer, J. Am. Chem. Soc., 121, 6737 (1999); https://doi.org/10.1021/ja9831397.
- P.R. Schleyer, M. Manoharan, H.J. Jiao and F. Stahl, Org. Lett., 3, 3643 (2001); https://doi.org/10.1021/ol016553b.
- C. Corminboeuf, T. Heine, G. Seifert, P.R. Schleyer and J. Weber, Phys. Chem. Chem. Phys., 6, 273 (2004); https://doi.org/10.1039/B313383B.
- B.M. Bode and M.S. Gordon, J. Mol. Graph. Model., 16, 133 (1998); https://doi.org/10.1016/S1093-3263(99)00002-9.
- P.R. Schleyer, M. Manoharan, Z.X. Wang, B. Kiran, H. Jiao, R. Puchta and N.J.R. van Eikema Hommes, Org. Lett., 3, 2465 (2001); https://doi.org/10.1021/ol016217v.
References
F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms, Springer Science Business Media Inc.: New York (2000).
R.B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry. Verlag-Chemie GmbG, Academic Press Inc.: Weinheim/Bergstr, edn 1 (1971).
J.A. Ross, R.P. Seiders and D.M. Lemal, J. Am. Chem. Soc., 98, 4325 (1976); https://doi.org/10.1021/ja00430a060.
D.M. Birney and P.E. Wagenseller, J. Am. Chem. Soc., 116, 6262 (1994); https://doi.org/10.1021/ja00093a028.
D.M. Birney, S. Ham and G.R. Unruh, J. Am. Chem. Soc., 119, 4509 (1997); https://doi.org/10.1021/ja963551r.
D.M. Birney, J. Am. Chem. Soc., 122, 10917 (2000); https://doi.org/10.1021/ja0020005.
W.W. Shumway, N.K. Dalley and D.M. Birney, J. Org. Chem., 66, 5832 (2001); https://doi.org/10.1021/jo015698t.
C. Zhou and D.M. Birney, J. Am. Chem. Soc., 124, 5231 (2002); https://doi.org/10.1021/ja017559z.
L. Luo, M.D. Bartberger and W.R.J. Dolbier, J. Am. Chem. Soc., 119, 12366 (1997); https://doi.org/10.1021/ja972701a.
W.M.F. Fabian, V.A. Bakulev and C.O. Kappe, J. Org. Chem., 63, 5801 (1998); https://doi.org/10.1021/jo980238u.
W.M.F. Fabian, C.O. Kappe and V.A. Bakulev, J. Org. Chem., 65, 47 (2000); https://doi.org/10.1021/jo990997s.
M. Alajarin, A. Vidal, P. Sanchez-Andrada, F. Tovar and G. Ochoa, Org. Lett., 2, 965 (2000); https://doi.org/10.1021/ol0056168.
G. Rauhut, J. Org. Chem., 66, 5444 (2001); https://doi.org/10.1021/jo010307w.
E. Chamorro, J. Chem. Phys., 118, 8687 (2003); https://doi.org/10.1063/1.1566740.
J.J. Finnerty and C. Wentrup, J. Org. Chem., 69, 1909 (2004); https://doi.org/10.1021/jo035419x.
M. Zora, J. Org. Chem., 69, 1940 (2004); https://doi.org/10.1021/jo035548d.
J. Kalcher and W.M.F. Fabian, Theor. Chem. Acc., 109, 195 (2003); https://doi.org/10.1007/s00214-002-0410-6.
E.E. Chamorro and R. Notario, J. Phys. Chem. A, 108, 4099 (2004); https://doi.org/10.1021/jp049847y.
A.R. de Lera, R. Alvarez, B. Lecea, A. Torrado and F.P. Cossio, Angew. Chem. Int. Ed., 40, 557 (2001); https://doi.org/10.1002/1521-3773(20010202)40:3<557::AIDANIE557>3.0.CO;2-T.
J.R. -Otero and E.M. Cabaleiro-Lago, Angew. Chem. Int. Ed., 41, 1147 (2002); https://doi.org/10.1002/1521-3773(20020402)41:7<1147::AIDANIE1147>3.0.CO;2-J.
A.R. de Lera and F.P. Cossio, Angew. Chem. Int. Ed., 41, 1150 (2002); https://doi.org/10.1002/1521-3773(20020402)41:7<1150::AIDANIE1150>3.0.CO;2-M.
J. Rodríguez-Otero and E.M. Cabaleiro-Lago, Chem. Eur. J., 9, 1837 (2003); https://doi.org/10.1002/chem.200390211.
E. Matito, J. Poater, M. Duran and M. Sola, ChemPhysChem, 7, 111 (2006); https://doi.org/10.1002/cphc.200500446.
H.E. Zimmerman, Acc. Chem. Res., 4, 272 (1971); https://doi.org/10.1021/ar50044a002.
R. Herges, H. Jiao and P. von Ragué Schleyer, Angew. Chem. Int. Ed. Engl., 33, 1376 (1994); https://doi.org/10.1002/anie.199413761.
H. Jiao and P.R. Schleyer, J. Phys. Org. Chem., 11, 655 (1998); https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U.
M. Manoharan, F. De Proft and P. Geerlings, J. Org. Chem., 65, 7971 (2000); https://doi.org/10.1021/jo001156k.
M. Manoharan, F. De Proft and P. Geerlings, J. Chem. Soc., Perkin Trans. 2, 8, 1767 (2000); https://doi.org/10.1039/b002344m.
A.C. Tsipis, C.E. Kefalidis and C.A. Tsipis, J. Am. Chem. Soc., 130, 9144 (2008); https://doi.org/10.1021/ja802344z.
A.C. Tsipis and C.A. Tsipis, J. Am. Chem. Soc., 125, 1136 (2003); https://doi.org/10.1021/ja028786j.
C.A. Tsipis, E.E. Karagiannis, P.F. Kladou and A.C. Tsipis, J. Am. Chem. Soc., 126, 12916 (2004); https://doi.org/10.1021/ja0469277.
C.S. Wannere, C. Corminboeuf, Z.-X. Wang, M.D. Wodrich, R.B. King and P.R. Schleyer, J. Am. Chem. Soc., 127, 5701 (2005); https://doi.org/10.1021/ja042716q.
C. Corminboeuf, C.S. Wannere, D. Roy, R.B. King and P.R. Schleyer, Inorg. Chem., 45, 214 (2006); https://doi.org/10.1021/ic051576y.
G.H. Zhang, Y.F. Zhao, J.I. Wu and P.R. Schleyer, Inorg. Chem., 48, 6773 (2009); https://doi.org/10.1021/ic900718t.
Z. Chen, C. Corminboeuf, T. Heine, J. Bohmann and P.R. Schleyer, J. Am. Chem. Soc., 125, 13930 (2003); https://doi.org/10.1021/ja0361392.
P.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N.J.R. van Eikema Hommes, J. Am. Chem. Soc., 118, 6317 (1996); https://doi.org/10.1021/ja960582d.
S. Jayaprakash, J. Jeevanandam and K. Subramani, J. Mol. Model., 20, 2494 (2014); https://doi.org/10.1007/s00894-014-2494-z.
S. Jayaprakash, J. Jeevanandam, K. Subramani and A. Sangeetha, Comput. Theor. Chem., 1056, 52 (2015); https://doi.org/10.1016/j.comptc.2015.01.004.
P. Piecuch, S.A. Kucharski, K. Kowalski and M. Musial, Comput. Phys. Commun., 149, 71 (2002); https://doi.org/10.1016/S0010-4655(02)00598-2.
K. Kowalski and P. Piecuch, J. Chem. Phys., 113, 18 (2000); https://doi.org/10.1063/1.481769.
K. Kowalski and P. Piecuch, J. Chem. Phys., 113, 5644 (2000); https://doi.org/10.1063/1.1290609.
P.C. Alex Granovsky, GAMESS/Firefly version 7.1.F; http://classic.chem.msu.su/gran/gamess/index.html.
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112.
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc.: Wallingford CT (2004).
R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Clarendon: Oxford (1990).
F.P. Cossio, I. Morao, H.J. Jiao and P.R. Schleyer, J. Am. Chem. Soc., 121, 6737 (1999); https://doi.org/10.1021/ja9831397.
P.R. Schleyer, M. Manoharan, H.J. Jiao and F. Stahl, Org. Lett., 3, 3643 (2001); https://doi.org/10.1021/ol016553b.
C. Corminboeuf, T. Heine, G. Seifert, P.R. Schleyer and J. Weber, Phys. Chem. Chem. Phys., 6, 273 (2004); https://doi.org/10.1039/B313383B.
B.M. Bode and M.S. Gordon, J. Mol. Graph. Model., 16, 133 (1998); https://doi.org/10.1016/S1093-3263(99)00002-9.
P.R. Schleyer, M. Manoharan, Z.X. Wang, B. Kiran, H. Jiao, R. Puchta and N.J.R. van Eikema Hommes, Org. Lett., 3, 2465 (2001); https://doi.org/10.1021/ol016217v.