Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Transition Metal(II) Schiff Bases Complexes Derived from 2,5-Dihalosalicylaldehyde and 4-Methyl-3-thiosemicarbazide
Corresponding Author(s) : Jai Devi
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
The metal complexes of cobalt(II), nickel(II) copper(II) and zinc(II) with Schiff bases [HL1-2] derived from 2,5-dichlorosalicylaldehyde/2,5-dibromosalicylaldehyde and 4-methyl-3-thiosemicarbazide were synthesized. The structure of all the compounds have been evaluated on the basis of elemental analysis, molar conductance measurements and spectroscopic studies like FT-IR, UV-visible, NMR, ESR and mass. The Schiff base ligands existed as NOS donor coordinating to metal ion through azomethine nitrogen, sulphur of thiosemicarbazide and oxygen of deprotonated phenolic group forming complexes of the type [M(L1-2)2] in 1:2 molar ratio. The spectroscopic data and physical measurement techniques suggested octahedral geometry around metal centres.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.H. Osman, Transition Met. Chem., 31, 35 (2006); https://doi.org/10.1007/s11243-005-6265-7.
- J. Devi, S. Devi and A. Kumar, MedChemComm, 7, 932 (2016); https://doi.org/10.1039/C5MD00554J.
- C. Sousa, C. Freire and B. de Castro, Molecules, 8, 894 (2003); https://doi.org/10.3390/81200894.
- J. Costamagna, J. Vargas, R. Latorre, A. Alvarado and G. Mena, Coord. Chem. Rev., 119, 67 (1992); https://doi.org/10.1016/0010-8545(92)80030-U.
- M. Cindric, N. Strukan, V. Vrdoljak, T. Kajfez and B. Kamenar, Croat. Chem. Acta, 76, 157 (1992).
- D.E. Hamilton, R.S. Drago and A. Zombeck, J. Am. Chem. Soc., 109, 374 (1987); https://doi.org/10.1021/ja00236a014.
- J.M. Bindlish, S.C. Bhatia, P. Gautam and P.C. Jain, Indian J. Chem., 16A, 279 (1978).
- R.A. Ahmadi and S. Amani, Molecules, 17, 6434 (2012); https://doi.org/10.3390/molecules17066434.
- P. Jain and K.K. Chaturvedi, J. Inorg. Nucl. Chem., 39, 901 (1993); https://doi.org/10.1016/0022-1902(77)80182-6.
- R.D. Archer and B. Wang, Inorg. Chem., 29, 39 (1990); https://doi.org/10.1021/ic00326a009.
- R.-G. Xiong, B.-L. Song, J.-L. Zuo, X.-Z. You and X.-Y. Huang, Polyhedron, 15, 903 (1996); https://doi.org/10.1016/0277-5387(95)00319-6.
- T.S. Lobana, R. Sharma, G. Bawa and S. Khanna, Coord. Chem. Rev., 253, 977 (2009); https://doi.org/10.1016/j.ccr.2008.07.004.
- J.R. Dilworth and R. Hueting, Inorg. Chim. Acta, 389, 3 (2012); https://doi.org/10.1016/j.ica.2012.02.019.
- V. Philip, V. Suni, M.R.P. Kurup and M. Nethaji, Polyhedron, 25, 1931 (2006); https://doi.org/10.1016/j.poly.2005.12.023.
- F.A. French and E.J. Blanz Jr., J. Med. Chem., 9, 585 (1966); https://doi.org/10.1021/jm00322a032.
- M. Das and S.E. Livingstone, Br. J. Cancer, 37, 466 (1978); https://doi.org/10.1038/bjc.1978.68.
- A.S. Dobek, D.L. Klayman, E.T. Dickson, J.P. Scovill and E.C. Tramont, Antimicrob. Agents Chemother., 18, 27 (1980); https://doi.org/10.1128/AAC.18.1.27.
- C. Shipman Jr., J.R. Smith, J.C. Drach and D.L. Klayman, Antiviral Res., 6, 197 (1986); https://doi.org/10.1016/0166-3542(86)90002-1.
- M. Kabil, S. Ghazy, A. El-Asmy and Y. Sherif, Anal. Sci., 12, 431 (1996); https://doi.org/10.2116/analsci.12.431.
- G.A. Al-Hazmi, M.S. El-Shahawi and A.A. El-Asmy, Transition Met. Chem., 30, 464 (2005); https://doi.org/10.1007/s11243-005-2362-x.
- K.S. Kuamr and C.P. Varma, J. Pharm. Sci. Res., 9, 131 (2017).
- J. Devi, N. Batra, S. Sharma, J. Yadav and R. Malhotra, Der. Pharm. Chem., 9, 97 (2017).
- J. Devi and N. Batra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 710 (2015); https://doi.org/10.1016/j.saa.2014.07.041.
- M.M. Abd-Elzaher, Appl. Organomet. Chem., 18, 149 (2004); https://doi.org/10.1002/aoc.608.
- B.J. Hathaway and A.E. Underhill, J. Chem. Soc., 3091 (1961); https://doi.org/10.1039/JR9610003091.
References
A.H. Osman, Transition Met. Chem., 31, 35 (2006); https://doi.org/10.1007/s11243-005-6265-7.
J. Devi, S. Devi and A. Kumar, MedChemComm, 7, 932 (2016); https://doi.org/10.1039/C5MD00554J.
C. Sousa, C. Freire and B. de Castro, Molecules, 8, 894 (2003); https://doi.org/10.3390/81200894.
J. Costamagna, J. Vargas, R. Latorre, A. Alvarado and G. Mena, Coord. Chem. Rev., 119, 67 (1992); https://doi.org/10.1016/0010-8545(92)80030-U.
M. Cindric, N. Strukan, V. Vrdoljak, T. Kajfez and B. Kamenar, Croat. Chem. Acta, 76, 157 (1992).
D.E. Hamilton, R.S. Drago and A. Zombeck, J. Am. Chem. Soc., 109, 374 (1987); https://doi.org/10.1021/ja00236a014.
J.M. Bindlish, S.C. Bhatia, P. Gautam and P.C. Jain, Indian J. Chem., 16A, 279 (1978).
R.A. Ahmadi and S. Amani, Molecules, 17, 6434 (2012); https://doi.org/10.3390/molecules17066434.
P. Jain and K.K. Chaturvedi, J. Inorg. Nucl. Chem., 39, 901 (1993); https://doi.org/10.1016/0022-1902(77)80182-6.
R.D. Archer and B. Wang, Inorg. Chem., 29, 39 (1990); https://doi.org/10.1021/ic00326a009.
R.-G. Xiong, B.-L. Song, J.-L. Zuo, X.-Z. You and X.-Y. Huang, Polyhedron, 15, 903 (1996); https://doi.org/10.1016/0277-5387(95)00319-6.
T.S. Lobana, R. Sharma, G. Bawa and S. Khanna, Coord. Chem. Rev., 253, 977 (2009); https://doi.org/10.1016/j.ccr.2008.07.004.
J.R. Dilworth and R. Hueting, Inorg. Chim. Acta, 389, 3 (2012); https://doi.org/10.1016/j.ica.2012.02.019.
V. Philip, V. Suni, M.R.P. Kurup and M. Nethaji, Polyhedron, 25, 1931 (2006); https://doi.org/10.1016/j.poly.2005.12.023.
F.A. French and E.J. Blanz Jr., J. Med. Chem., 9, 585 (1966); https://doi.org/10.1021/jm00322a032.
M. Das and S.E. Livingstone, Br. J. Cancer, 37, 466 (1978); https://doi.org/10.1038/bjc.1978.68.
A.S. Dobek, D.L. Klayman, E.T. Dickson, J.P. Scovill and E.C. Tramont, Antimicrob. Agents Chemother., 18, 27 (1980); https://doi.org/10.1128/AAC.18.1.27.
C. Shipman Jr., J.R. Smith, J.C. Drach and D.L. Klayman, Antiviral Res., 6, 197 (1986); https://doi.org/10.1016/0166-3542(86)90002-1.
M. Kabil, S. Ghazy, A. El-Asmy and Y. Sherif, Anal. Sci., 12, 431 (1996); https://doi.org/10.2116/analsci.12.431.
G.A. Al-Hazmi, M.S. El-Shahawi and A.A. El-Asmy, Transition Met. Chem., 30, 464 (2005); https://doi.org/10.1007/s11243-005-2362-x.
K.S. Kuamr and C.P. Varma, J. Pharm. Sci. Res., 9, 131 (2017).
J. Devi, N. Batra, S. Sharma, J. Yadav and R. Malhotra, Der. Pharm. Chem., 9, 97 (2017).
J. Devi and N. Batra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 710 (2015); https://doi.org/10.1016/j.saa.2014.07.041.
M.M. Abd-Elzaher, Appl. Organomet. Chem., 18, 149 (2004); https://doi.org/10.1002/aoc.608.
B.J. Hathaway and A.E. Underhill, J. Chem. Soc., 3091 (1961); https://doi.org/10.1039/JR9610003091.