Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Characterization of Carbon Nanotubes using Carbon Black by Electrochemical Technique with Anodic Aluminium Oxide
Corresponding Author(s) : Rana Afif Majed Anaee
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
This study describes preparation and characterization of carbon nanotubes (CNTs) by anodic aluminium oxide (AAO) template assisted electrochemical deposition. A highly ordered array of cylindrical designed pores of anodic aluminium oxide was obtained from anodizing aluminum to use it as a template for deposition of carbon nanotubes. The fabrication of carbon nanotubes was done using moraine of micro-meter sized carbon black with diameter range of 0.5-75 μm. The characterization of carbon nanotubes was done by FTIR, SEM and AFM indicating the formation of carbon nanotubes within anodic aluminium oxide template by electrodeposition at room temperature. FTIR spectrum indicated the presence of peaks of CHx group associated with O-H, in addition to appear COOH group after functionalization of carbon nanotubes with (HNO3-H2SO4) mixture to obtain functionalized carbon nanotubes (F-CNTs). The SEM morphology confirmed the fabrication of nanotube by appearing opened ends of tubes with nano dimensions. The atomic force microscopy analysis gave smother surface with more average diameters from 66.3 to 77.21 nm for F-CNTs compared with carbon nanotubes due to formation carboxylic groups.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Luisa and S. Duncan, Nanotechnologies: Principles, Applications, Implications and Hands-On Activities, European Commission (2013).
- B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz and H.D. Espinosa, Nat. Nanotechnol., 3, 626 (2008); https://doi.org/10.1038/nnano.2008.211.
- D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu and R.S. Ruoff, Appl. Mech. Rev., 55, 495 (2002); https://doi.org/10.1115/1.1490129.
- K. Bordo, Ph.D. Thesis, Nanoporous Thin Film Templates for the Fabrication of Nanowires and Nanotubes, NanoSYD, Mads Clausen Institute University of Southern Denmark (2011).
- S. Iijima, C. Brabec, A. Maiti and J. Bernholc, J. Chem. Phys., 104, 2089 (1996); https://doi.org/10.1063/1.470966.
- P.M. Chaudhari, S.C. Daswadkar and P.V. Kasture, J. Pharm. Res., 2, 1179 (2009).
- H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo and C. Pham-Huy, BioMed. Res. Int., Article ID 578290 (2013); https://doi.org/10.1155/2013/578290.
- G.D. Sulka, ed.: A. Eftekhari, Highly Ordered Anodic Porous Alumina, Formation, by Self-Organized Anodzing, section 1.2.1 Types of Anodic Oxide Film, In: Nanostructured Materials in Electrochemistry, WileyVCH Verlag GmbH & Co. KGaA, Chap. 1 (2008).
- D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature, 363, 605 (1993); https://doi.org/10.1038/363605a0.
- S. Iijima, Nature, 354, 56 (1991); https://doi.org/10.1038/354056a0.
- R. Fu, M.S. Dresselhaus, G. Dresselhaus, B. Zheng, J. Liu, J. Satcher Jr. and T.F. Baumann, J. Non-Crystalline Solids, 318, 223 (2003); https://doi.org/10.1016/S0022-3093(02)01903-8.
- G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher and R.S. Ruoff, Chem. Mater., 10, 260 (1998); https://doi.org/10.1021/cm970412f.
- A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer and R.E. Smalley, Science, 273, 483 (1996); https://doi.org/10.1126/science.273.5274.483.
- T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert and R.E. Smalley, J. Phys. Chem., 99, 10694 (1995); https://doi.org/10.1021/j100027a002.
- S. Dadras and M. Faraji, J. Phys. Chem. Solids, 116, 203 (2018); https://doi.org/10.1016/j.jpcs.2018.01.039.
- X. Liu, B. Shen, P. Yuan, D. Patel and C. Wu, Energy Procedia, 142, 525 (2017); https://doi.org/10.1016/j.egypro.2017.12.082.
- P.X. Hou, C. Liu, C. Shi and H.M. Cheng, Chin. Sci. Bull., 57, 187 (2012); https://doi.org/10.1007/s11434-011-4892-2.
- R.A. Anaee, A.H. Ali and A.R. Hassan, Asian J. Chem., 28, 2529 (2016); https://doi.org/10.14233/ajchem.2016.20078.
- R.A. Anaee, A.H. Ali and A.R. Hasan, Int. J. Adv. Sci. Eng. Technol., 5, 29 (2017).
- R.A. Jishi, L. Venkataraman, M.S. Dresselhaus and G. Dresselhaus, Chem. Phys. Lett., 209, 77 (1993); https://doi.org/10.1016/0009-2614(93)87205-H.
- A. Misra, P.K. Tyagi, P. Rai and D.S. Misra, J. Nanosci. Nanotechnol., 7, 1820 (2007); https://doi.org/10.1166/jnn.2007.723.
- N. Kouklin, M. Tzolov, D. Straus, A. Yin and J.M. Xu, Appl. Phys. Lett., 85, 4463 (2004); https://doi.org/10.1063/1.1812837
References
F. Luisa and S. Duncan, Nanotechnologies: Principles, Applications, Implications and Hands-On Activities, European Commission (2013).
B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz and H.D. Espinosa, Nat. Nanotechnol., 3, 626 (2008); https://doi.org/10.1038/nnano.2008.211.
D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu and R.S. Ruoff, Appl. Mech. Rev., 55, 495 (2002); https://doi.org/10.1115/1.1490129.
K. Bordo, Ph.D. Thesis, Nanoporous Thin Film Templates for the Fabrication of Nanowires and Nanotubes, NanoSYD, Mads Clausen Institute University of Southern Denmark (2011).
S. Iijima, C. Brabec, A. Maiti and J. Bernholc, J. Chem. Phys., 104, 2089 (1996); https://doi.org/10.1063/1.470966.
P.M. Chaudhari, S.C. Daswadkar and P.V. Kasture, J. Pharm. Res., 2, 1179 (2009).
H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo and C. Pham-Huy, BioMed. Res. Int., Article ID 578290 (2013); https://doi.org/10.1155/2013/578290.
G.D. Sulka, ed.: A. Eftekhari, Highly Ordered Anodic Porous Alumina, Formation, by Self-Organized Anodzing, section 1.2.1 Types of Anodic Oxide Film, In: Nanostructured Materials in Electrochemistry, WileyVCH Verlag GmbH & Co. KGaA, Chap. 1 (2008).
D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature, 363, 605 (1993); https://doi.org/10.1038/363605a0.
S. Iijima, Nature, 354, 56 (1991); https://doi.org/10.1038/354056a0.
R. Fu, M.S. Dresselhaus, G. Dresselhaus, B. Zheng, J. Liu, J. Satcher Jr. and T.F. Baumann, J. Non-Crystalline Solids, 318, 223 (2003); https://doi.org/10.1016/S0022-3093(02)01903-8.
G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher and R.S. Ruoff, Chem. Mater., 10, 260 (1998); https://doi.org/10.1021/cm970412f.
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer and R.E. Smalley, Science, 273, 483 (1996); https://doi.org/10.1126/science.273.5274.483.
T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert and R.E. Smalley, J. Phys. Chem., 99, 10694 (1995); https://doi.org/10.1021/j100027a002.
S. Dadras and M. Faraji, J. Phys. Chem. Solids, 116, 203 (2018); https://doi.org/10.1016/j.jpcs.2018.01.039.
X. Liu, B. Shen, P. Yuan, D. Patel and C. Wu, Energy Procedia, 142, 525 (2017); https://doi.org/10.1016/j.egypro.2017.12.082.
P.X. Hou, C. Liu, C. Shi and H.M. Cheng, Chin. Sci. Bull., 57, 187 (2012); https://doi.org/10.1007/s11434-011-4892-2.
R.A. Anaee, A.H. Ali and A.R. Hassan, Asian J. Chem., 28, 2529 (2016); https://doi.org/10.14233/ajchem.2016.20078.
R.A. Anaee, A.H. Ali and A.R. Hasan, Int. J. Adv. Sci. Eng. Technol., 5, 29 (2017).
R.A. Jishi, L. Venkataraman, M.S. Dresselhaus and G. Dresselhaus, Chem. Phys. Lett., 209, 77 (1993); https://doi.org/10.1016/0009-2614(93)87205-H.
A. Misra, P.K. Tyagi, P. Rai and D.S. Misra, J. Nanosci. Nanotechnol., 7, 1820 (2007); https://doi.org/10.1166/jnn.2007.723.
N. Kouklin, M. Tzolov, D. Straus, A. Yin and J.M. Xu, Appl. Phys. Lett., 85, 4463 (2004); https://doi.org/10.1063/1.1812837