Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Fullerene (C60) on Vibrational Spectra, Hydrodynamic Diameter, Zeta Potential and Microstructures of C60/Poly(vinyl pyrrolidone) Nanofluids in Aqueous Medium
Corresponding Author(s) : Manoranjan Behera
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
In this article, we discussed the effect of fullerene (C60) content on the optical, electrokinetic and microstructural properties of poly(vinyl pyrrolidone) C60:PVP nanofluids in water. Vibrational spectra reveal a charge transfer type interaction that exists between poly(vinyl pyrrolidone) and C60 results in an enhancement in vibrational band intensity in some of the selective bands of poly(vinyl pyrrolidone) molecule. Photoluminescence spectra show a decrease in the light intensity of poly(vinyl pyrrolidone) upon addition of C60 due to donor-acceptor type interaction. Dynamic light scattering study show that the hydrodynamic diameter of C60 assemblies varies non-linearly with C60 content. Polydispersity index values evident a well dispersed structures of C60 assemblies with poly(vinyl pyrrolidone) in water. Both zeta potential and surface conductivity values are also varies nonlinearly with C60 content in the nanofluids. Micrographs in C60:PVP nanofluids shows well ordered self assembled nanostructures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Sun, S. Anders, H.F. Hamann, J.U. Thiele, J.E.E. Baglin, T. Thomson, E.E. Fullerton, C.B. Murray and B.D. Terris, J. Am. Chem. Soc., 124, 2884 (2002); https://doi.org/10.1021/ja0176503.
- S. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B. Murray and B.D. Terris, J. Phys. Chem. B, 107, 5419 (2003); https://doi.org/10.1021/jp027314o.
- Y. Xiong, Q. Chen, N. Tao, J. Ye, Y. Tang, J. Feng and X. Gu, Nanotechnology, 18, 345301 (2007); https://doi.org/10.1088/0957-4484/18/34/345301.
- M.E. Davis, Mol. Pharm., 6, 659 (2009); https://doi.org/10.1021/mp900015y.
- C. Schmidtke, R. Eggers, R. Zierold, A. Feld, H. Kloust, C. Wolter, J. Ostermann, J.P. Merkl, T. Schotten, K. Nielsch and H. Weller, Langmuir, 30, 11190 (2014); https://doi.org/10.1021/la5021934.
- S.S. Babu, H. Möhwald and T. Nakanishi, Chem. Soc. Rev., 39, 4021 (2010); https://doi.org/10.1039/c000680g.
- C.Y. Chang, C.E. Wu, S.Y. Chen, C. Cui, Y.J. Cheng, C.S. Hsu, Y.L. Wang and Y. Li, Angew. Chem. Int. Ed., 50, 9386 (2011); https://doi.org/10.1002/anie.201103782.
- D. Chirvase, J. Parisi, J.C. Hummelen and V. Dyakonov, Nanotechnology, 15, 1317 (2004); https://doi.org/10.1088/0957-4484/15/9/035.
- G. Mountrichas, S. Pispas, E. Xenogiannopoulou, P. Aloukos and S. Couris, J. Phys. Chem. B, 111, 4315 (2007); https://doi.org/10.1021/jp068796x.
- M. Behera and S. Ram, J. Incl. Phenom. Macrocycl. Chem., 72, 233 (2012); https://doi.org/10.1007/s10847-011-9957-y.
- M. Behera and S. Ram, Plasmonics, 11, 1057 (2016); https://doi.org/10.1007/s11468-015-0142-9.
- M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruct., 24, 154 (2016); https://doi.org/10.1080/1536383X.2015.1130703.
- M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruct., 25, 143 (2017); https://doi.org/10.1080/1536383X.2016.1271788.
- M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruc.,, 23, 1072 (2015).
- M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruct., 23, 906 (2015); https://doi.org/10.1080/1536383X.2015.1041109.
References
S. Sun, S. Anders, H.F. Hamann, J.U. Thiele, J.E.E. Baglin, T. Thomson, E.E. Fullerton, C.B. Murray and B.D. Terris, J. Am. Chem. Soc., 124, 2884 (2002); https://doi.org/10.1021/ja0176503.
S. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B. Murray and B.D. Terris, J. Phys. Chem. B, 107, 5419 (2003); https://doi.org/10.1021/jp027314o.
Y. Xiong, Q. Chen, N. Tao, J. Ye, Y. Tang, J. Feng and X. Gu, Nanotechnology, 18, 345301 (2007); https://doi.org/10.1088/0957-4484/18/34/345301.
M.E. Davis, Mol. Pharm., 6, 659 (2009); https://doi.org/10.1021/mp900015y.
C. Schmidtke, R. Eggers, R. Zierold, A. Feld, H. Kloust, C. Wolter, J. Ostermann, J.P. Merkl, T. Schotten, K. Nielsch and H. Weller, Langmuir, 30, 11190 (2014); https://doi.org/10.1021/la5021934.
S.S. Babu, H. Möhwald and T. Nakanishi, Chem. Soc. Rev., 39, 4021 (2010); https://doi.org/10.1039/c000680g.
C.Y. Chang, C.E. Wu, S.Y. Chen, C. Cui, Y.J. Cheng, C.S. Hsu, Y.L. Wang and Y. Li, Angew. Chem. Int. Ed., 50, 9386 (2011); https://doi.org/10.1002/anie.201103782.
D. Chirvase, J. Parisi, J.C. Hummelen and V. Dyakonov, Nanotechnology, 15, 1317 (2004); https://doi.org/10.1088/0957-4484/15/9/035.
G. Mountrichas, S. Pispas, E. Xenogiannopoulou, P. Aloukos and S. Couris, J. Phys. Chem. B, 111, 4315 (2007); https://doi.org/10.1021/jp068796x.
M. Behera and S. Ram, J. Incl. Phenom. Macrocycl. Chem., 72, 233 (2012); https://doi.org/10.1007/s10847-011-9957-y.
M. Behera and S. Ram, Plasmonics, 11, 1057 (2016); https://doi.org/10.1007/s11468-015-0142-9.
M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruct., 24, 154 (2016); https://doi.org/10.1080/1536383X.2015.1130703.
M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruct., 25, 143 (2017); https://doi.org/10.1080/1536383X.2016.1271788.
M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruc.,, 23, 1072 (2015).
M. Behera and S. Ram, Fuller. Nanotub. Carbon Nanostruct., 23, 906 (2015); https://doi.org/10.1080/1536383X.2015.1041109.