Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Controlled Release of Insecticides through Polyurea Microcapsules Synthesized by Interfacial Polycondensation
Corresponding Author(s) : Shrikant J. Wagh
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
Among the various objectives of microencapsulation, controlled release of an active ingredient is perhaps the most engaging and challenging. Interfacial polycondensation is one of the most effective techniques for the synthesis of microcapsules loaded with an active ingredient. Here, chlorpyriphos, cypermethrin and pretilachlor have been encapsulated in polyurea shells synthesized via interfacial polycondensation under various preparative conditions and their release rates into methanol at 28-30 ºC. The effect of initial monomer mole ratio, temperature, and the number of moles of limiting reactant (during synthesis of microcapsules by interfacial polycondensation) is discussed in terms of the properties of the shell, which ultimately controls the release rate. Semi-crystalline polyurea was synthesized which was characterized by Fourier transform infrared spectrophotometer, powder X-ray analysis and differential scanning calorimeter. The encapsulation efficiency of various insecticides increases with a decrease in initial monomer mole ratio and decrease in moles of limiting reactant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.K. Gosh, Functional Coatings: by Polymer Microencapsulation WileyVCH Verlag GmbH & Co. edn 1, pp 1-24 (2006).
- C.S. Peyratout and L. Dähne, Angew. Chem. Int. Ed., 43, 3762 (2004); https://doi.org/10.1002/anie.200300568.
- S. Maciulyte, T. Kochane and S. Budriene, J. Microencapsul., 32, 547 (2015); https://doi.org/10.3109/02652048.2015.1065916.
- H.B. Scher, ACS Symp. Ser., 53, 126 (1977); https://doi.org/10.1021/bk-1977-0053.ch012.
- S.K. Roy, S.K. Singh, J. Bajpai and A.K. Bajpai, Cent. Eur. J. Chem., 12, 453 (2014); https://doi.org/10.2478/s11532-013-0405-2.
- M.-L. De Temmerman, J. Demeester, F. De Vos and S.C. De Smedt, Biomacromolecules, 12, 1283 (2011); https://doi.org/10.1021/bm101559w.
- M. Peanparkdee, S. Iwamoto and R. Yamauchi, Rev. Agric. Sci., 4, 56 (2016); https://doi.org/10.7831/ras.4.56.
- C. Liang, X. Lingling, S. Hongbo and Z. Zhibin, Energy Convers. Manage., 50, 723 (2009); https://doi.org/10.1016/j.enconman.2008.09.044.
- S. Mondal, Appl. Therm. Eng., 28, 1536 (2008); https://doi.org/10.1016/j.applthermaleng.2007.08.009.
- F. Salaün, G. Bedek, E. Devaux, D. Dupont and L. Gengembre, J. Membr. Sci., 370, 23 (2011); https://doi.org/10.1016/j.memsci.2010.11.033.
- C.P. Chang, T. Yamamoto, M. Kimura, T. Sato, K. Ichikawa and T. Dobashi, J. Control. Release, 86, 207 (2003); https://doi.org/10.1016/S0168-3659(02)00366-8.
- B.J. Heßbrügge and A.M. Vaidya, J. Membr. Sci., 128, 175 (1997); https://doi.org/10.1016/S0376-7388(96)00307-9.
- G.H. Desai and K.H. Jin Park, Dry. Technol., 23, 1361 (2005); https://doi.org/10.1081/DRT-200063478.
- M. Madene, M. Jacquot, J. Scher and S. Desobry, Int. J. Food Sci. Technol., 41, 1 (2006); https://doi.org/10.1111/j.1365-2621.2005.00980.x.
- R. Naik, P. Joshi and R. Deshpande, Catal. Commun., 5, 195 (2004); https://doi.org/10.1016/j.catcom.2004.02.002.
- L.J.J.M. Janssen and K. te Nijenhuis, J. Membr. Sci., 65, 69 (1992); https://doi.org/10.1016/0376-7388(92)87054-2.
- P.W. Morgan and S.L. Kwolek, J. Polym. Sci., 40, 299 (1959); https://doi.org/10.1002/pol.1959.1204013702.
- K. Hirech, S. Payan, G. Carnelle, L. Brujes and J. Legrand, Powder Technol., 130, 324 (2003); https://doi.org/10.1016/S0032-5910(02)00211-5.
- B. Perrin, Improving Insecticides through Encapsulation, Pesticide Outlook, pp. 68-71 April (2000).
- S. Benita, Microencapsulation Methods and Industrial Applications, CRC Press, Taylor & Francis Group, NW, FL, edn 2 (2006).
- K.J. Tsuji, J. Microencapsul., 18, 137 (2001); https://doi.org/10.1080/026520401750063856.
- S.K. Yadav, A.K. Suresh and K.C. Khilar, AIChE J., 36, 431 (1990); https://doi.org/10.1002/aic.690360312.
- S.K. Yadav, K.C. Khilar and A.K. Suresh, J. Membr. Sci., 125, 213 (1997); https://doi.org/10.1016/S0376-7388(96)00171-8.
- S.J. Wagh, S.S. Dhumal and A.K. Suresh, J. Membr. Sci., 328, 246 (2009); https://doi.org/10.1016/j.memsci.2008.12.018.
- S.S. Dhumal and A.K. Suresh, Polymer, 51, 1176 (2010); https://doi.org/10.1016/j.polymer.2010.01.004.
- T. Takahashi, Y. Taguchi and M. Tanaka, J. Appl. Polym. Sci., 107, 2000 (2008); https://doi.org/10.1002/app.27238.
- F. Sopeña, A. Cabrera, C. Maqueda and E. Morillo, J. Agric. Food Chem., 53, 3540 (2005); https://doi.org/10.1021/jf048007d.
References
S.K. Gosh, Functional Coatings: by Polymer Microencapsulation WileyVCH Verlag GmbH & Co. edn 1, pp 1-24 (2006).
C.S. Peyratout and L. Dähne, Angew. Chem. Int. Ed., 43, 3762 (2004); https://doi.org/10.1002/anie.200300568.
S. Maciulyte, T. Kochane and S. Budriene, J. Microencapsul., 32, 547 (2015); https://doi.org/10.3109/02652048.2015.1065916.
H.B. Scher, ACS Symp. Ser., 53, 126 (1977); https://doi.org/10.1021/bk-1977-0053.ch012.
S.K. Roy, S.K. Singh, J. Bajpai and A.K. Bajpai, Cent. Eur. J. Chem., 12, 453 (2014); https://doi.org/10.2478/s11532-013-0405-2.
M.-L. De Temmerman, J. Demeester, F. De Vos and S.C. De Smedt, Biomacromolecules, 12, 1283 (2011); https://doi.org/10.1021/bm101559w.
M. Peanparkdee, S. Iwamoto and R. Yamauchi, Rev. Agric. Sci., 4, 56 (2016); https://doi.org/10.7831/ras.4.56.
C. Liang, X. Lingling, S. Hongbo and Z. Zhibin, Energy Convers. Manage., 50, 723 (2009); https://doi.org/10.1016/j.enconman.2008.09.044.
S. Mondal, Appl. Therm. Eng., 28, 1536 (2008); https://doi.org/10.1016/j.applthermaleng.2007.08.009.
F. Salaün, G. Bedek, E. Devaux, D. Dupont and L. Gengembre, J. Membr. Sci., 370, 23 (2011); https://doi.org/10.1016/j.memsci.2010.11.033.
C.P. Chang, T. Yamamoto, M. Kimura, T. Sato, K. Ichikawa and T. Dobashi, J. Control. Release, 86, 207 (2003); https://doi.org/10.1016/S0168-3659(02)00366-8.
B.J. Heßbrügge and A.M. Vaidya, J. Membr. Sci., 128, 175 (1997); https://doi.org/10.1016/S0376-7388(96)00307-9.
G.H. Desai and K.H. Jin Park, Dry. Technol., 23, 1361 (2005); https://doi.org/10.1081/DRT-200063478.
M. Madene, M. Jacquot, J. Scher and S. Desobry, Int. J. Food Sci. Technol., 41, 1 (2006); https://doi.org/10.1111/j.1365-2621.2005.00980.x.
R. Naik, P. Joshi and R. Deshpande, Catal. Commun., 5, 195 (2004); https://doi.org/10.1016/j.catcom.2004.02.002.
L.J.J.M. Janssen and K. te Nijenhuis, J. Membr. Sci., 65, 69 (1992); https://doi.org/10.1016/0376-7388(92)87054-2.
P.W. Morgan and S.L. Kwolek, J. Polym. Sci., 40, 299 (1959); https://doi.org/10.1002/pol.1959.1204013702.
K. Hirech, S. Payan, G. Carnelle, L. Brujes and J. Legrand, Powder Technol., 130, 324 (2003); https://doi.org/10.1016/S0032-5910(02)00211-5.
B. Perrin, Improving Insecticides through Encapsulation, Pesticide Outlook, pp. 68-71 April (2000).
S. Benita, Microencapsulation Methods and Industrial Applications, CRC Press, Taylor & Francis Group, NW, FL, edn 2 (2006).
K.J. Tsuji, J. Microencapsul., 18, 137 (2001); https://doi.org/10.1080/026520401750063856.
S.K. Yadav, A.K. Suresh and K.C. Khilar, AIChE J., 36, 431 (1990); https://doi.org/10.1002/aic.690360312.
S.K. Yadav, K.C. Khilar and A.K. Suresh, J. Membr. Sci., 125, 213 (1997); https://doi.org/10.1016/S0376-7388(96)00171-8.
S.J. Wagh, S.S. Dhumal and A.K. Suresh, J. Membr. Sci., 328, 246 (2009); https://doi.org/10.1016/j.memsci.2008.12.018.
S.S. Dhumal and A.K. Suresh, Polymer, 51, 1176 (2010); https://doi.org/10.1016/j.polymer.2010.01.004.
T. Takahashi, Y. Taguchi and M. Tanaka, J. Appl. Polym. Sci., 107, 2000 (2008); https://doi.org/10.1002/app.27238.
F. Sopeña, A. Cabrera, C. Maqueda and E. Morillo, J. Agric. Food Chem., 53, 3540 (2005); https://doi.org/10.1021/jf048007d.