Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Solar Water Splitting Performance of 50-100 nm Pore Sized TiO2 Nanotubes
Corresponding Author(s) : P. Elangovan
Asian Journal of Chemistry,
Vol. 31 No. 3 (2019): Vol 31 Issue 3
Abstract
Herein, we report the fabrication of titanium dioxide nanotubes via anodization technique through with and without hydrofluoric acid . The impact of hydrofluoric acid followed by annealing effect on TiO2 nanotubes for the solar water splitting performance was examined. Prepared TiO2 samples exhibited a diameter of about 50 to 100 nm sized nanotubes and hierarchical structures and they subjected to annealing. Synthesis and annealing effects on chemical, physical and photoelectrochemical water splitting activity of TiO2 samples were scrutinized. The crystalline nature, structure and surface morphologies of prepared TiO2 photocatalysts were explored by X-ray diffraction, scanning electron microscope, and the oxidation states of both titanium and oxygen was determined by X-ray photoelectron spectroscopy. As a consequence, after annealing at 500 ºC, TiO2 thin films treated with hydrofluoric acid solution (HF-TiO2) were found to exhibit a remarkable photoelectrochemical performance than bare TiO2 nanotubes under UV light irradiation. Moreover, the mechanistic insights acquired in the current research would be beneficial to design a novel and highly efficient photocatalyst for solar water splitting systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
- K. Rajeshwar, J. Appl. Electrochem., 37, 765 (2007); https://doi.org/10.1007/s10800-007-9333-1.
- S. Caramori, V. Cristino, R. Argazzi, L. Meda and C.A. Bignozzi, Inorg. Chem., 49, 3320 (2010); https://doi.org/10.1021/ic9023037.
- A.J. Nozik and R. Memming, J. Phys. Chem., 100, 13061 (1996); https://doi.org/10.1021/jp953720e.
- M. Ni, M.K.H. Leung, D.Y.C. Leung and K. Sumathy, Renew. Sustain. Energy Rev., 11, 401 (2007); https://doi.org/10.1016/j.rser.2005.01.009.
- K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner and M. AlJassim, Appl. Phys. Lett., 93, 163117 (2008); https://doi.org/10.1063/1.3002282.
- V. Chakrapani, J. Thangala and M.K. Sunkara, Int. J. Hydrogen Energy, 34, 9050 (2009); https://doi.org/10.1016/j.ijhydene.2009.09.031.
- B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska and J. Augustynski, J. Mater. Chem., 18, 2298 (2008); https://doi.org/10.1039/b718644d.
- J. Su, L. Guo, S. Yoriya and C.A. Grimes, Cryst. Growth Des., 10, 856 (2010); https://doi.org/10.1021/cg9012125.
- A. Duret and M. Grätzel, J. Phys. Chem. B, 109, 17184 (2005); https://doi.org/10.1021/jp044127c.
- S.K. Mohapatra, S.E. John, S. Banerjee and M. Misra, Chem. Mater., 21, 3048 (2009); https://doi.org/10.1021/cm8030208.
- J. Brillet, M. Gratzel and K. Sivula, Nano Lett., 10, 4155 (2010); https://doi.org/10.1021/nl102708c.
- R. Morrish, M. Rahman, J. MacElroy and C.A. Wolden, ChemSusChem, 4, 474 (2011); https://doi.org/10.1002/cssc.201100066.
- H.M. Chen, C.K. Chen, R.-S. Liu, L. Zhang, J. Zhang and D.P. Wilkinson, Chem. Soc. Rev., 41, 5654 (2012); https://doi.org/10.1039/c2cs35019j.
- F.E. Osterloh, Chem. Mater., 20, 35 (2008); https://doi.org/10.1021/cm7024203.
- S. Chandrasekaran, C. Bowen, P. Zhang, Z. Li, Q. Yuan, X. Ren and L. Deng, J. Mater. Chem. A Mater. Energy Sustain., 6, 11078 (2018); https://doi.org/10.1039/C8TA03669A.
- S. Chandrasekaran, E.J. Kim, J.S. Chung, I.-K. Yoo, V. Senthilkumar, Y.S. Kim, C.R. Bowen, V. Adamaki and S. Hyun Hur, Chem. Eng. J., 309, 682 (2017); https://doi.org/10.1016/j.cej.2016.10.087.
- S. Chandrasekaran, Y.-L.T. Ngo, L. Sui, E.J. Kim, D.K. Dang, J.S. Chung and S.H. Hur, Dalton Trans., 46, 13912 (2017); https://doi.org/10.1039/C7DT02936E.
- S. Chandrasekaran, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 290, 465 (2016); https://doi.org/10.1016/j.cej.2016.01.029.
- S. Chandrasekaran, E.J. Kim, J.S. Chung, C.R. Bowen, B. Rajagopalan, V. Adamaki, R.D.K. Misra and S.H. Hur, J. Mater. Chem. A Mater. Energy Sustain., 4, 13271 (2016); https://doi.org/10.1039/C6TA05043C.
- S. Chandrasekaran, S.H. Hur, W.M. Choi, J.S. Chung and E.J. Kim, Mater. Lett., 160, 92 (2015); https://doi.org/10.1016/j.matlet.2015.07.091.
- A. Galinska and J. Walendziewski, Energy Fuels, 19, 1143 (2005); https://doi.org/10.1021/ef0400619.
- J. Tang, J.R. Durrant and D.R. Klug, J. Am. Chem. Soc., 130, 13885 (2008); https://doi.org/10.1021/ja8034637.
- S. Liang, J. He, Z. Sun, Q. Liu, Y. Jiang, H. Cheng, B. He, Z. Xie and S. Wei, J. Phys. Chem. C, 116, 9049 (2012); https://doi.org/10.1021/jp300552s.
- K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi and C.A. Grimes, J. Phys. Chem. C, 113, 6327 (2009); https://doi.org/10.1021/jp809385x.
- W. Yan, Z. Sun, T. Yao, Z. Pan, Z. Li, Q. Liu and S. Wei, J. Appl. Phys., 106, 123918 (2009); https://doi.org/10.1063/1.3272855.
- D. Gong, C. Grimes, O.K. Varghese, W. Hu, R. Singh, Z. Chen and E.C. Dickey, J. Mater. Res., 16, 3331 (2001); https://doi.org/10.1557/JMR.2001.0457.
- M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes, J. Phys. Chem. C, 111, 14992 (2007); https://doi.org/10.1021/jp075258r.
- S. Yoriya and C.A. Grimes, Langmuir, 26, 417 (2010); https://doi.org/10.1021/la9020146.
- K. Shankar, G.K. Mor, A. Fitzgerald and C.A. Grimes, J. Phys. Chem. C, 111, 21 (2007); https://doi.org/10.1021/jp066352v.
- C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor and C.A. Grimes, J. Phys. Chem. B, 109, 15754 (2005); https://doi.org/10.1021/jp052736u.
- S. Yoriya and C.A. Grimes, J. Mater. Chem., 21, 102 (2011); https://doi.org/10.1039/C0JM02421J.
- C.A. Grimes and G.K. Mor, TiO2 Nanotube Arrays: Synthesis, Properties and Applications, Springer, 2009.
- G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, Sol. Energy Mater. Sol. Cells, 90, 2011 (2006); https://doi.org/10.1016/j.solmat.2006.04.007.
- J. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Curr. Opin. Solid State Mater. Sci., 11, 3 (2007); https://doi.org/10.1016/j.cossms.2007.08.004.
- O.K. Varghese, D. Gong, M. Paulose, K.G. Ong and C.A. Grimes, Sens. Actuators B Chem., 93, 338 (2003); https://doi.org/10.1016/S0925-4005(03)00222-3.
- E. Sennik, Z. Çolak, N. Kilinç and Z.Z. Öztürk, Int. J. Hydrogen Energy, 35, 4420 (2010); https://doi.org/10.1016/j.ijhydene.2010.01.100.
- C.P. Puls, N.E. Staley, J.-S. Moon, J.A. Robinson, P.M. Campbell, J.L. Tedesco, R.L. Myers-Ward, C.R. Eddy Jr., D.K. Gaskill and Y. Liu, Appl. Phys. Lett., 99, 013103 (2011); https://doi.org/10.1063/1.3607284.
- P. Romero-Gomez, A. Palmero, T. Ben, J. Lozano, S. Molina and A. González-Elipe, Phys. Rev. B, 82, 115420 (2010); https://doi.org/10.1103/PhysRevB.82.115420.
- D.S. Dhawale, D.P. Dubal, R.R. Salunkhe, T.P. Gujar, M.C. Rath and C.D. Lokhande, J. Alloys Compd., 499, 63 (2010); https://doi.org/10.1016/j.jallcom.2010.01.126.
- B. Chen, J. Hou and K. Lu, Langmuir, 29, 5911 (2013); https://doi.org/10.1021/la400586r.
- J.M. Macak, H. Hildebrand, U. Marten-Jahns and P. Schmuki, J. Electroanal. Chem., 621, 254 (2008); https://doi.org/10.1016/j.jelechem.2008.01.005.
- A. Ghicov and P. Schmuki, Chem. Commun., 2791 (2009); https://doi.org/10.1039/b822726h.
- B.M. Reddy, B. Chowdhury and P.G. Smirniotis, Appl. Catal. A Gen., 211, 19 (2001); https://doi.org/10.1016/S0926-860X(00)00834-6.
- R. Reiche, S. Oswald, F. Yubero, J.P. Espinos, J.P. Holgado and A.R. Gonzalez-Elipe, J. Phys. Chem. B, 108, 9905 (2004); https://doi.org/10.1021/jp031274m.
- S. Chandrasekaran, Sol. Energy Mater. Sol. Cells, 109, 220 (2013); https://doi.org/10.1016/j.solmat.2012.11.003.
- G. Silversmit, G. De Doncker and R. De Gryse, Surf. Sci. Spectra, 9, 21 (2002); https://doi.org/10.1116/11.20020701.
- M.-Y. Hsu, W.-C. Yang, H. Teng and J. Leu, J. Electrochem. Soc., 158, K81 (2011); https://doi.org/10.1149/1.3533388.
- J. Mayer, U. Diebold, T. Madey and E. Garfunkel, J. Electron Spectrosc. Relat. Phenom., 73, 1 (1995); https://doi.org/10.1016/0368-2048(94)02258-5.
- U. Diebold and T. Madey, Surf. Sci. Spectra, 4, 227 (1996); https://doi.org/10.1116/1.1247794.
- Y.V. Pleskov and M. Krotova, Electrochim. Acta, 38, 107 (1993); https://doi.org/10.1016/0013-4686(93)80015-R.
- J.P. Sukamto, C.S. McMillan and W. Smyrl, Electrochim. Acta, 38, 15 (1993); https://doi.org/10.1016/0013-4686(93)80005-K.
- J. Van de Lagemaat, M. Plakman, D. Vanmaekelbergh and J. Kelly, Appl. Phys. Lett., 69, 2246 (1996); https://doi.org/10.1063/1.117142.
References
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
K. Rajeshwar, J. Appl. Electrochem., 37, 765 (2007); https://doi.org/10.1007/s10800-007-9333-1.
S. Caramori, V. Cristino, R. Argazzi, L. Meda and C.A. Bignozzi, Inorg. Chem., 49, 3320 (2010); https://doi.org/10.1021/ic9023037.
A.J. Nozik and R. Memming, J. Phys. Chem., 100, 13061 (1996); https://doi.org/10.1021/jp953720e.
M. Ni, M.K.H. Leung, D.Y.C. Leung and K. Sumathy, Renew. Sustain. Energy Rev., 11, 401 (2007); https://doi.org/10.1016/j.rser.2005.01.009.
K.-S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner and M. AlJassim, Appl. Phys. Lett., 93, 163117 (2008); https://doi.org/10.1063/1.3002282.
V. Chakrapani, J. Thangala and M.K. Sunkara, Int. J. Hydrogen Energy, 34, 9050 (2009); https://doi.org/10.1016/j.ijhydene.2009.09.031.
B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska and J. Augustynski, J. Mater. Chem., 18, 2298 (2008); https://doi.org/10.1039/b718644d.
J. Su, L. Guo, S. Yoriya and C.A. Grimes, Cryst. Growth Des., 10, 856 (2010); https://doi.org/10.1021/cg9012125.
A. Duret and M. Grätzel, J. Phys. Chem. B, 109, 17184 (2005); https://doi.org/10.1021/jp044127c.
S.K. Mohapatra, S.E. John, S. Banerjee and M. Misra, Chem. Mater., 21, 3048 (2009); https://doi.org/10.1021/cm8030208.
J. Brillet, M. Gratzel and K. Sivula, Nano Lett., 10, 4155 (2010); https://doi.org/10.1021/nl102708c.
R. Morrish, M. Rahman, J. MacElroy and C.A. Wolden, ChemSusChem, 4, 474 (2011); https://doi.org/10.1002/cssc.201100066.
H.M. Chen, C.K. Chen, R.-S. Liu, L. Zhang, J. Zhang and D.P. Wilkinson, Chem. Soc. Rev., 41, 5654 (2012); https://doi.org/10.1039/c2cs35019j.
F.E. Osterloh, Chem. Mater., 20, 35 (2008); https://doi.org/10.1021/cm7024203.
S. Chandrasekaran, C. Bowen, P. Zhang, Z. Li, Q. Yuan, X. Ren and L. Deng, J. Mater. Chem. A Mater. Energy Sustain., 6, 11078 (2018); https://doi.org/10.1039/C8TA03669A.
S. Chandrasekaran, E.J. Kim, J.S. Chung, I.-K. Yoo, V. Senthilkumar, Y.S. Kim, C.R. Bowen, V. Adamaki and S. Hyun Hur, Chem. Eng. J., 309, 682 (2017); https://doi.org/10.1016/j.cej.2016.10.087.
S. Chandrasekaran, Y.-L.T. Ngo, L. Sui, E.J. Kim, D.K. Dang, J.S. Chung and S.H. Hur, Dalton Trans., 46, 13912 (2017); https://doi.org/10.1039/C7DT02936E.
S. Chandrasekaran, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 290, 465 (2016); https://doi.org/10.1016/j.cej.2016.01.029.
S. Chandrasekaran, E.J. Kim, J.S. Chung, C.R. Bowen, B. Rajagopalan, V. Adamaki, R.D.K. Misra and S.H. Hur, J. Mater. Chem. A Mater. Energy Sustain., 4, 13271 (2016); https://doi.org/10.1039/C6TA05043C.
S. Chandrasekaran, S.H. Hur, W.M. Choi, J.S. Chung and E.J. Kim, Mater. Lett., 160, 92 (2015); https://doi.org/10.1016/j.matlet.2015.07.091.
A. Galinska and J. Walendziewski, Energy Fuels, 19, 1143 (2005); https://doi.org/10.1021/ef0400619.
J. Tang, J.R. Durrant and D.R. Klug, J. Am. Chem. Soc., 130, 13885 (2008); https://doi.org/10.1021/ja8034637.
S. Liang, J. He, Z. Sun, Q. Liu, Y. Jiang, H. Cheng, B. He, Z. Xie and S. Wei, J. Phys. Chem. C, 116, 9049 (2012); https://doi.org/10.1021/jp300552s.
K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi and C.A. Grimes, J. Phys. Chem. C, 113, 6327 (2009); https://doi.org/10.1021/jp809385x.
W. Yan, Z. Sun, T. Yao, Z. Pan, Z. Li, Q. Liu and S. Wei, J. Appl. Phys., 106, 123918 (2009); https://doi.org/10.1063/1.3272855.
D. Gong, C. Grimes, O.K. Varghese, W. Hu, R. Singh, Z. Chen and E.C. Dickey, J. Mater. Res., 16, 3331 (2001); https://doi.org/10.1557/JMR.2001.0457.
M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes, J. Phys. Chem. C, 111, 14992 (2007); https://doi.org/10.1021/jp075258r.
S. Yoriya and C.A. Grimes, Langmuir, 26, 417 (2010); https://doi.org/10.1021/la9020146.
K. Shankar, G.K. Mor, A. Fitzgerald and C.A. Grimes, J. Phys. Chem. C, 111, 21 (2007); https://doi.org/10.1021/jp066352v.
C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor and C.A. Grimes, J. Phys. Chem. B, 109, 15754 (2005); https://doi.org/10.1021/jp052736u.
S. Yoriya and C.A. Grimes, J. Mater. Chem., 21, 102 (2011); https://doi.org/10.1039/C0JM02421J.
C.A. Grimes and G.K. Mor, TiO2 Nanotube Arrays: Synthesis, Properties and Applications, Springer, 2009.
G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, Sol. Energy Mater. Sol. Cells, 90, 2011 (2006); https://doi.org/10.1016/j.solmat.2006.04.007.
J. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Curr. Opin. Solid State Mater. Sci., 11, 3 (2007); https://doi.org/10.1016/j.cossms.2007.08.004.
O.K. Varghese, D. Gong, M. Paulose, K.G. Ong and C.A. Grimes, Sens. Actuators B Chem., 93, 338 (2003); https://doi.org/10.1016/S0925-4005(03)00222-3.
E. Sennik, Z. Çolak, N. Kilinç and Z.Z. Öztürk, Int. J. Hydrogen Energy, 35, 4420 (2010); https://doi.org/10.1016/j.ijhydene.2010.01.100.
C.P. Puls, N.E. Staley, J.-S. Moon, J.A. Robinson, P.M. Campbell, J.L. Tedesco, R.L. Myers-Ward, C.R. Eddy Jr., D.K. Gaskill and Y. Liu, Appl. Phys. Lett., 99, 013103 (2011); https://doi.org/10.1063/1.3607284.
P. Romero-Gomez, A. Palmero, T. Ben, J. Lozano, S. Molina and A. González-Elipe, Phys. Rev. B, 82, 115420 (2010); https://doi.org/10.1103/PhysRevB.82.115420.
D.S. Dhawale, D.P. Dubal, R.R. Salunkhe, T.P. Gujar, M.C. Rath and C.D. Lokhande, J. Alloys Compd., 499, 63 (2010); https://doi.org/10.1016/j.jallcom.2010.01.126.
B. Chen, J. Hou and K. Lu, Langmuir, 29, 5911 (2013); https://doi.org/10.1021/la400586r.
J.M. Macak, H. Hildebrand, U. Marten-Jahns and P. Schmuki, J. Electroanal. Chem., 621, 254 (2008); https://doi.org/10.1016/j.jelechem.2008.01.005.
A. Ghicov and P. Schmuki, Chem. Commun., 2791 (2009); https://doi.org/10.1039/b822726h.
B.M. Reddy, B. Chowdhury and P.G. Smirniotis, Appl. Catal. A Gen., 211, 19 (2001); https://doi.org/10.1016/S0926-860X(00)00834-6.
R. Reiche, S. Oswald, F. Yubero, J.P. Espinos, J.P. Holgado and A.R. Gonzalez-Elipe, J. Phys. Chem. B, 108, 9905 (2004); https://doi.org/10.1021/jp031274m.
S. Chandrasekaran, Sol. Energy Mater. Sol. Cells, 109, 220 (2013); https://doi.org/10.1016/j.solmat.2012.11.003.
G. Silversmit, G. De Doncker and R. De Gryse, Surf. Sci. Spectra, 9, 21 (2002); https://doi.org/10.1116/11.20020701.
M.-Y. Hsu, W.-C. Yang, H. Teng and J. Leu, J. Electrochem. Soc., 158, K81 (2011); https://doi.org/10.1149/1.3533388.
J. Mayer, U. Diebold, T. Madey and E. Garfunkel, J. Electron Spectrosc. Relat. Phenom., 73, 1 (1995); https://doi.org/10.1016/0368-2048(94)02258-5.
U. Diebold and T. Madey, Surf. Sci. Spectra, 4, 227 (1996); https://doi.org/10.1116/1.1247794.
Y.V. Pleskov and M. Krotova, Electrochim. Acta, 38, 107 (1993); https://doi.org/10.1016/0013-4686(93)80015-R.
J.P. Sukamto, C.S. McMillan and W. Smyrl, Electrochim. Acta, 38, 15 (1993); https://doi.org/10.1016/0013-4686(93)80005-K.
J. Van de Lagemaat, M. Plakman, D. Vanmaekelbergh and J. Kelly, Appl. Phys. Lett., 69, 2246 (1996); https://doi.org/10.1063/1.117142.