Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Schematic Mechanism of 3-Phenylamino-4-phenyl-5-tetra-O-acetyl-b-Dglucopyranosylimino- 1,2,4-dithiazolidines and Its De-acetylated Nucleoside
Corresponding Author(s) : Priti Tayade (Gosavi)
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
A systematic synthesis of 3-phenylimino-4-phenyl-5-tetra-O-acetyl-b-D-glucopyranosylimino-1,2,4- dithiazolidine (acetylated glucopyranosylimino nucleoside) from glucose as starting material. The steps included acetylating glucose to glucose penta-acetate (II). Step 2 involves the bromination of glucose penta-acetate (II) to 2,3,4,6 tetra-O-acetyl-a-D-glucopyranosyl bromide (III). In step 3 compound (III) reacted with lead thiocyanate to give 2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl isothiocyanate (IV). In the step 4 N-phenyl-3-tetra-O-acetyl-b-D-glucopyranosyl isothiocyanate (V) was prepared. In the last step on refluxing compound (V) with N-phenyl S-chloro isothiocarbamoyl chloride to yield acetylated glucopyranosyl nucleoside. Furthermore de-acetylating of acetylated glucopyranosyl nucleoside was carried out to obtain 3-phenylimino-4-phenyl-5-b-D-gluopyranosyl imino 1,2,4-dithiazolidine (de-acetylated glucopyranosylimino nucleoside). The synthesized acetylated glucopyranosylimino nucleoside and deacetylated glucopyranosylimono nucleoside were structurally confirmed by elemental analysis, ultraviolet spectral analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass spectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.P. Moss, P.A.S. Smith and D. Tavernier, Pure Appl. Chem., 67, 1307 (1995); https://doi.org/10.1351/pac199567081307.
- T. Lindahl, Nature, 362, 709 (1993); https://doi.org/10.1038/362709a0.
- L. Stryer, Biochemistry, W. H. Freeman & Co: New York, edn 4 (1988).
- J.D. Watson and F.H.C. Crick, Nature, 171, 737 (1953); https://doi.org/10.1038/171737a0.
- S. Wurtzer, S. Compain, H. Benech, A.J. Hance and F. Clavel, J. Virol., 79, 14815 (2005); https://doi.org/10.1128/JVI.79.23.14815-14821.2005.
- E. Zielonacka-lis, Nucleos. Nucleot. J., 8, 383 (1989); https://doi.org/10.1080/07328318908054183.
- K.N. Puri and G.V. Korpe, Rasayan J. Chem., 9, 401 (2016).
- N.D. Thanh, E-J. Chem., 9, 55 (2012); https://doi.org/10.1155/2012/615601.
- K.N. Puri and G.V. Kopre, Int. J. Chem. Sci., 13, 1787 (2015).
- J.F.J. Dippy, S.R.C. Hughes and A. Rozanski, J. Chem. Soc., 2492 (1959); https://doi.org/10.1039/jr9590002492.
- S. Natelson and S. Gottfried, Org. Synth. Coll., 23, 37 (1943); https://doi.org/10.15227/orgsyn.023.0037.
- T. Urbanski, Chemistry and Technology of Explosives, Pergamon Press, Oxford and Polish Scientific Publishers, Warsaw, Vol. L (1964).
- H.N. Alyea, J. Chem. Educ., 46, A218 (1969); https://doi.org/10.1021/ed046pA310.5.
- P.P. Deohate, Der Pharm. Chem., 4, 2368 (2012).
- G. Huang, Q. Tang, D. Li, Y. Huang, D. Zhang, Curr. Org. Synth., 13, 82 (2016); https://doi.org/10.2174/1570179412999150703112245.
- A. Mohammed and R.S. Jwad, Scient. J. Kerbala Univ., 9, 42 (2011).
- Z. Tian, T. Hrinyo-Pavlina, R.W. Roeske and P.N. Rao, J. Chromatogr. A, 541, 297 (1991); https://doi.org/10.1016/S0021-9673(01)96001-7.
- Z.D. Wang, Y. Mo, C.-L. Chiou and M.A. Liu, Molecules, 15, 374 (2010); https://doi.org/10.3390/molecules15010374.
References
G.P. Moss, P.A.S. Smith and D. Tavernier, Pure Appl. Chem., 67, 1307 (1995); https://doi.org/10.1351/pac199567081307.
T. Lindahl, Nature, 362, 709 (1993); https://doi.org/10.1038/362709a0.
L. Stryer, Biochemistry, W. H. Freeman & Co: New York, edn 4 (1988).
J.D. Watson and F.H.C. Crick, Nature, 171, 737 (1953); https://doi.org/10.1038/171737a0.
S. Wurtzer, S. Compain, H. Benech, A.J. Hance and F. Clavel, J. Virol., 79, 14815 (2005); https://doi.org/10.1128/JVI.79.23.14815-14821.2005.
E. Zielonacka-lis, Nucleos. Nucleot. J., 8, 383 (1989); https://doi.org/10.1080/07328318908054183.
K.N. Puri and G.V. Korpe, Rasayan J. Chem., 9, 401 (2016).
N.D. Thanh, E-J. Chem., 9, 55 (2012); https://doi.org/10.1155/2012/615601.
K.N. Puri and G.V. Kopre, Int. J. Chem. Sci., 13, 1787 (2015).
J.F.J. Dippy, S.R.C. Hughes and A. Rozanski, J. Chem. Soc., 2492 (1959); https://doi.org/10.1039/jr9590002492.
S. Natelson and S. Gottfried, Org. Synth. Coll., 23, 37 (1943); https://doi.org/10.15227/orgsyn.023.0037.
T. Urbanski, Chemistry and Technology of Explosives, Pergamon Press, Oxford and Polish Scientific Publishers, Warsaw, Vol. L (1964).
H.N. Alyea, J. Chem. Educ., 46, A218 (1969); https://doi.org/10.1021/ed046pA310.5.
P.P. Deohate, Der Pharm. Chem., 4, 2368 (2012).
G. Huang, Q. Tang, D. Li, Y. Huang, D. Zhang, Curr. Org. Synth., 13, 82 (2016); https://doi.org/10.2174/1570179412999150703112245.
A. Mohammed and R.S. Jwad, Scient. J. Kerbala Univ., 9, 42 (2011).
Z. Tian, T. Hrinyo-Pavlina, R.W. Roeske and P.N. Rao, J. Chromatogr. A, 541, 297 (1991); https://doi.org/10.1016/S0021-9673(01)96001-7.
Z.D. Wang, Y. Mo, C.-L. Chiou and M.A. Liu, Molecules, 15, 374 (2010); https://doi.org/10.3390/molecules15010374.