Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antifungal Activities of Some Novel Mixed Ligand Complexes of Manganese(III) g-Diketone
Corresponding Author(s) : Sudha Yadava
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
A novel series of manganese(III) mixed ligand complexes containing g-diketone (hexane-2,5-dione) and ethylenediamine have been synthesized, that are high-spin complexes with general formula [Mn(g-diketone)2X(en)]; where g-diketone is hexane 2,5-dione (hdo); X = Cl–, Br–, N3– or NCS– and en = ethylenediamine. All these complexes have been characterized using UV-visible, FT-IR, ESI-MS spectra, elemental analyses, molar conductance studies and magnetic susceptibility measurements. The tentative structures for all the four complexes have been proposed to be octahedral. The [Mn(hdo)2NCS(en)] and [Mn(hdo)2Cl(en)] show pronounced antifungal activity towards Aspergillus niger, Aspergillus flavus and Aspergillus terreus fungal species.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Das, A. Datta, B. B. Beyene, C. Massera, E. Garribba, C. Sinha, T. Akitsu and S. Tankae, Polyhedron, 127, 315 (2017); https://doi.org/10.1016/j.poly.2017.02.017.
- J.E. Kostka, G.W. Luther III and K.H. Nealson, Geochim. Cosmochim. Acta, 59, 894 (1995); https://doi.org/10.1016/0016-7037(95)00007-0.
- S.G. Silva, J.A. Nobrega and F.R.P. Rocha, Microchem. J., 98, 109 (2011); https://doi.org/10.1016/j.microc.2010.12.004.
- D.G. Kehres and M.E. Maguire, FEMS Microbiol. Rev., 27, 263 (2003); https://doi.org/10.1016/S0168-6445(03)00052-4.
- T. Yagyu, K. Yano, T. Kimata and K. Jitsukawa, Organometallics, 28, 2342 (2009); https://doi.org/10.1021/om900007b.
- D.F. Leto and T.A. Jackson, J. Biol. Inorg. Chem., 19, 1 (2014); https://doi.org/10.1007/s00775-013-1067-4.
- G. Christou, Acc. Chem. Res., 22, 328 (1989); https://doi.org/10.1021/ar00165a006.
- M.N. Bhattacharjee, M.K. Chaudhuri and D.T. Khathing, Dalton Trans., 669 (1982); https://doi.org/10.1039/dt9820000669.
- M. Damercheli, D. Dayyani, M. Behzad, B. Mehravi and M.S. Ardestani J. Coord. Chem., 68, 1500 (2015); https://doi.org/10.1080/00958972.2015.1027697.
- S. Yadava and S.L. Bharati, J. Coord. Chem., 64, 3950 (2011); https://doi.org/10.1080/00958972.2011.632412.
- S.L. Bharati and S. Yadava, J. Coord. Chem., 65, 3492 (2012); https://doi.org/10.1080/00958972.2012.718763.
- K. Barnese, E.B. Gralla, J.S. Valentine and D.E. Cabelli, Proc. Natl. Acad. Sci. USA, 109, 6892 (2012); https://doi.org/10.1073/pnas.1203051109.
- S. Kumar, E.J. Newmann, J.B. Sortais, K. Junge, C. Darcel and M. Beller, Nature Commun., 7, 12641 (2016); https://doi.org/10.1038/ncomms12641.
- V.W. Day, B.R. Stults, E.L. Tasset, R.O. Day and R.S. Marianelli, J. Am. Chem. Soc., 96, 2650 (1974); https://doi.org/10.1021/ja00815a075.
- R. Freitag and J. Conradie, J. Chem. Educ., 90, 1692 (2013); https://doi.org/10.1021/ed400370p.
- P.L.W. Tregenna-Piggott, Inorg. Chem., 47, 448 (2008); https://doi.org/10.1021/ic700968q.
- B.R. Stults, R.S. Marianelli and V.W. Day, Inorg. Chem., 18, 1853 (1979); https://doi.org/10.1021/ic50197a028.
- R. Freitag, T.J. Muller and J. Conradie, J. Chem. Crystallogr., 44, 352 (2014); https://doi.org/10.1007/s10870-014-0522-6.
- W.R. Cullen and E.B. Wickenheiser, J. Organomet. Chem., 370, 141 (1989); https://doi.org/10.1016/0022-328X(89)87281-X.
- A. Sudo, S. Hirayama and T. Endo, J. Polym. Sci. A: Polym. Chem., 48, 479 (2010); https://doi.org/10.1002/pola.23810.
- M.J. Rodriguez- Douton, M. Isabel Fernandez, A.M. Gonzalez-Noya, M. Mareiro, R. Pedrido and M.J. Romero, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 36, 655 (2006); https://doi.org/10.1080/15533170600962430.
- F.D. Lewis, A.M. Miller and G.D. Salvi, Inorg. Chem., 34, 3173 (1995); https://doi.org/10.1021/ic00116a007.
- Y.-F. Wang, K.K. Toh, E.P.J. Ng and S. Chiba, J. Am. Chem. Soc., 133, 6411 (2011); https://doi.org/10.1021/ja200879w.
- Y.-F. Wang and S. Chiba, J. Am. Chem. Soc., 131, 12570 (2009); https://doi.org/10.1021/ja905110c.
- B.A. Malik and J.M. Mir, J. Coord. Chem., 71, 104 (2018); https://doi.org/10.1080/00958972.2018.1429600.
- K. Isobe and S. Kawaguchi, Bull. Chem. Soc. Jpn., 48, 250 (1975); https://doi.org/10.1246/bcsj.48.250.
- S.F.A. Kettle, Coordination Compounds, Thomas Nelson and Sons, The Press: London, p. 168 (1975).
- J.E. Huheey, E.A. Keiter and R.L. Keiter, Inorganic Chemistry, Principles of Structure and Reactivity, Pearson Education: Singapore, edn 4, p. 445 (2005).
- G. Newman and D.B. Powell, J. Am. Chem. Soc., 0, 3447 (1962); https://doi.org/10.1039/JR9620003447.
- H. Visser, C.E. Dubé, W.H. Armstrong, K. Sauer and V.K. Yachandra, J. Am. Chem. Soc., 124, 11008 (2002); https://doi.org/10.1021/ja020409j.
- R.J.H. Clark and C.S. Williams, Spectrochim. Acta, 22, 1081 (1966); https://doi.org/10.1016/0371-1951(66)80198-4.
- J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall of India Private Limited, New Delhi (1969).
- B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Chichester, West Sussex, England, p. 104 (2004).
- E.B. Fleischer, J.M. Palmer, T.S. Srivastava and A. Chatterjee, J. Am. Chem. Soc., 93, 3162 (1971); https://doi.org/10.1021/ja00742a012.
- D.V. Behere and S. Mitra, Inorg. Chem., 19, 992 (1980); https://doi.org/10.1021/ic50206a039.
References
K. Das, A. Datta, B. B. Beyene, C. Massera, E. Garribba, C. Sinha, T. Akitsu and S. Tankae, Polyhedron, 127, 315 (2017); https://doi.org/10.1016/j.poly.2017.02.017.
J.E. Kostka, G.W. Luther III and K.H. Nealson, Geochim. Cosmochim. Acta, 59, 894 (1995); https://doi.org/10.1016/0016-7037(95)00007-0.
S.G. Silva, J.A. Nobrega and F.R.P. Rocha, Microchem. J., 98, 109 (2011); https://doi.org/10.1016/j.microc.2010.12.004.
D.G. Kehres and M.E. Maguire, FEMS Microbiol. Rev., 27, 263 (2003); https://doi.org/10.1016/S0168-6445(03)00052-4.
T. Yagyu, K. Yano, T. Kimata and K. Jitsukawa, Organometallics, 28, 2342 (2009); https://doi.org/10.1021/om900007b.
D.F. Leto and T.A. Jackson, J. Biol. Inorg. Chem., 19, 1 (2014); https://doi.org/10.1007/s00775-013-1067-4.
G. Christou, Acc. Chem. Res., 22, 328 (1989); https://doi.org/10.1021/ar00165a006.
M.N. Bhattacharjee, M.K. Chaudhuri and D.T. Khathing, Dalton Trans., 669 (1982); https://doi.org/10.1039/dt9820000669.
M. Damercheli, D. Dayyani, M. Behzad, B. Mehravi and M.S. Ardestani J. Coord. Chem., 68, 1500 (2015); https://doi.org/10.1080/00958972.2015.1027697.
S. Yadava and S.L. Bharati, J. Coord. Chem., 64, 3950 (2011); https://doi.org/10.1080/00958972.2011.632412.
S.L. Bharati and S. Yadava, J. Coord. Chem., 65, 3492 (2012); https://doi.org/10.1080/00958972.2012.718763.
K. Barnese, E.B. Gralla, J.S. Valentine and D.E. Cabelli, Proc. Natl. Acad. Sci. USA, 109, 6892 (2012); https://doi.org/10.1073/pnas.1203051109.
S. Kumar, E.J. Newmann, J.B. Sortais, K. Junge, C. Darcel and M. Beller, Nature Commun., 7, 12641 (2016); https://doi.org/10.1038/ncomms12641.
V.W. Day, B.R. Stults, E.L. Tasset, R.O. Day and R.S. Marianelli, J. Am. Chem. Soc., 96, 2650 (1974); https://doi.org/10.1021/ja00815a075.
R. Freitag and J. Conradie, J. Chem. Educ., 90, 1692 (2013); https://doi.org/10.1021/ed400370p.
P.L.W. Tregenna-Piggott, Inorg. Chem., 47, 448 (2008); https://doi.org/10.1021/ic700968q.
B.R. Stults, R.S. Marianelli and V.W. Day, Inorg. Chem., 18, 1853 (1979); https://doi.org/10.1021/ic50197a028.
R. Freitag, T.J. Muller and J. Conradie, J. Chem. Crystallogr., 44, 352 (2014); https://doi.org/10.1007/s10870-014-0522-6.
W.R. Cullen and E.B. Wickenheiser, J. Organomet. Chem., 370, 141 (1989); https://doi.org/10.1016/0022-328X(89)87281-X.
A. Sudo, S. Hirayama and T. Endo, J. Polym. Sci. A: Polym. Chem., 48, 479 (2010); https://doi.org/10.1002/pola.23810.
M.J. Rodriguez- Douton, M. Isabel Fernandez, A.M. Gonzalez-Noya, M. Mareiro, R. Pedrido and M.J. Romero, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 36, 655 (2006); https://doi.org/10.1080/15533170600962430.
F.D. Lewis, A.M. Miller and G.D. Salvi, Inorg. Chem., 34, 3173 (1995); https://doi.org/10.1021/ic00116a007.
Y.-F. Wang, K.K. Toh, E.P.J. Ng and S. Chiba, J. Am. Chem. Soc., 133, 6411 (2011); https://doi.org/10.1021/ja200879w.
Y.-F. Wang and S. Chiba, J. Am. Chem. Soc., 131, 12570 (2009); https://doi.org/10.1021/ja905110c.
B.A. Malik and J.M. Mir, J. Coord. Chem., 71, 104 (2018); https://doi.org/10.1080/00958972.2018.1429600.
K. Isobe and S. Kawaguchi, Bull. Chem. Soc. Jpn., 48, 250 (1975); https://doi.org/10.1246/bcsj.48.250.
S.F.A. Kettle, Coordination Compounds, Thomas Nelson and Sons, The Press: London, p. 168 (1975).
J.E. Huheey, E.A. Keiter and R.L. Keiter, Inorganic Chemistry, Principles of Structure and Reactivity, Pearson Education: Singapore, edn 4, p. 445 (2005).
G. Newman and D.B. Powell, J. Am. Chem. Soc., 0, 3447 (1962); https://doi.org/10.1039/JR9620003447.
H. Visser, C.E. Dubé, W.H. Armstrong, K. Sauer and V.K. Yachandra, J. Am. Chem. Soc., 124, 11008 (2002); https://doi.org/10.1021/ja020409j.
R.J.H. Clark and C.S. Williams, Spectrochim. Acta, 22, 1081 (1966); https://doi.org/10.1016/0371-1951(66)80198-4.
J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall of India Private Limited, New Delhi (1969).
B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Chichester, West Sussex, England, p. 104 (2004).
E.B. Fleischer, J.M. Palmer, T.S. Srivastava and A. Chatterjee, J. Am. Chem. Soc., 93, 3162 (1971); https://doi.org/10.1021/ja00742a012.
D.V. Behere and S. Mitra, Inorg. Chem., 19, 992 (1980); https://doi.org/10.1021/ic50206a039.