Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Atomic Layer Deposition of Zinc Oxide on Single and Multi-Walled Carbon Nanotubes and its Application in Solar Cells Simulation
Corresponding Author(s) : Abbas J. Atiyah
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
This work involves direct doping of Zn(CH3COO)2·2H2O with both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) at 60 ºC. The produced composites of ZnO/SWCNTs and ZnO/MWCNTs were investigated using X-rays diffraction patterns, atomic force microscopy and Fourier transform infrared spectroscopy. From the results, it was found that ZnO was deposited uniformly with both of single and multi-walled carbon nanotubes. It was also found that ZnO in the prepared composites does not lack its crystallinity as it was concluded from XRD patterns for the prepared composites. The activity of the prepared composites was investigated in solar cells simulations via applying these composites as a photocathode for a solar cell. The obtained results of simulated solar cells showed that used ZnO/MWCNTs composite showed higher fill factor, maximum current (Imax), maximum voltage (Vmax) and lower open circuit voltage (Voc) in comparison with ZnO/SWCNTs composite.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature, 318, 162 (1985); https://doi.org/10.1038/318162a0.
- S. Iijima, Nature, 354, 56 (1991); https://doi.org/10.1038/354056a0.
- S. Iijima and T. Ichihashi, Nature, 363, 603 (1993); https://doi.org/10.1038/363603a0.
- D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature, 363, 605 (1993); https://doi.org/10.1038/363605a0.
- M.S. Dresselhaus, G. Dresselhaus and R. Saito, Phys. Rev. B, 45, 6234 (1992); https://doi.org/10.1103/PhysRevB.45.6234.
- M.S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon, 33, 883 (1995); https://doi.org/10.1016/0008-6223(95)00017-8.
- W.C. Oha, F.J. Zhang, C.S. Lim and M.L. Chen, J. Ceram. Process. Res., 11, 479 (2010).
- C. Darnault, K. Rockne, A. Stevens, G.A. Mansoori and N. Sturchio, Water Environ. Res., 77, 2576 (2005); https://doi.org/10.2175/106143005X54632.
- F. Bundy, Physica A, 156, 169 (1989); https://doi.org/10.1016/0378-4371(89)90115-5.
- M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 10, 3739 (2010); https://doi.org/10.1166/jnn.2010.2939.
- A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim and D. Tomanek, Science, 269, 1550 (1995); https://doi.org/10.1126/science.269.5230.1550.
- G. Che, B.B. Lakshmi, E.R. Fisher and C.R. Martin, Nature, 393, 346 (1998); https://doi.org/10.1038/30694.
- B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou, Chem. Phys. Lett., 307, 153 (1999); https://doi.org/10.1016/S0009-2614(99)00486-8.
- A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, Nature, 386, 377 (1997); https://doi.org/10.1038/386377a0.
- A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science, 294, 1317 (2001); https://doi.org/10.1126/science.1065824.
- P.C. Collins, M.S. Arnold and P. Avouris, Science, 292, 706 (2001); https://doi.org/10.1126/science.1058782.
- C. Gao, Z. Guo, J.-H. Liu and X.-J. Huang, Nanoscale, 4, 1948 (2012); https://doi.org/10.1039/c2nr11757f.
- D.R. Kauffman and A. Star, Angew. Chem. Int. Ed., 47, 6550 (2008); https://doi.org/10.1002/anie.200704488.
- O. Yu, P. Jing-Cui, W. Hui and P. Zhi-Hua, Chin. Phys. B, 17, 3123 (2008); https://doi.org/10.1088/1674-1056/17/8/059.
- N.S. Lewis, Science, 315, 798 (2007); https://doi.org/10.1126/science.1137014.
- J. Goldemberg, T.B. Johansson and D. Anderson, World Energy Assessment: Overview: 2004 update, United Nations Development Programme (2004).
- J.E. Trancik, S.C. Barton and J. Hone, Nano Lett., 8, 982 (2008); https://doi.org/10.1021/nl071945i.
- E. Ramasamy, W.J. Lee, D.Y. Lee and J.S. Song, Electrochem. Commun., 10, 1087 (2008); https://doi.org/10.1016/j.elecom.2008.05.013.
- S. Hwang, J. Moon, S. Lee, D. Kim, D. Lee, W. Choi and M. Jeon, Electron. Lett., 43, 1455 (2007); https://doi.org/10.1049/el:20072867.
- M. Kang, Y. Han, H. Choi and M. Jeon, Electron. Lett., 46, 1509 (2010); https://doi.org/10.1049/el.2010.2606.
- C. Pacholski, A. Kornowski and H. Weller, Angewandte Chemie Int., 41, 1188 (2002); https://doi.org/10.1002/1521-3773(20020402)41:7<1188::AIDANIE1188>3.0.CO;2-5.
- Z. Wan, C. Jia, Y. Duan, L. Zhou, Y. Lin and Y. Shi, J. Mater. Chem., 22, 25140 (2012); https://doi.org/10.1039/c2jm34682f.
- R.Y.-Y. Lin, Y.-S. Yen, Y.-T. Cheng, C.-P. Lee, Y.-C. Hsu, H.-H. Chou, C.-Y. Hsu, Y.-C. Chen, J.T. Lin, K.-C. Ho and C. Tsai, Org. Lett., 14, 3612 (2012); https://doi.org/10.1021/ol301374c.
- M. Birowska, K. Milowska and J.A. Majewski, Acta Phys. Pol. A, 120, 845 (2011); https://doi.org/10.12693/APhysPolA.120.845.
- K. Nishimura, N. Okazaki, L. Pan and Y. Nakayama, Jpn. J. Appl. Phys., 43, L471 (2004); https://doi.org/10.1143/JJAP.43.L471.
- M.-L. Chen, F.-J. Zhang and W.-C. Oh, J. Korean Ceram. Soc., 45, 651 (2008); https://doi.org/10.4191/KCERS.2008.45.1.651.
- C.S. Chen, T.G. Liu, L.W. Lin, X.D. Xie, X.H. Chen, Q.C. Liu, B. Liang, W.W. Yu and C.Y. Qiu, J. Nanopart. Res., 15, 1295 (2013); https://doi.org/10.1007/s11051-012-1295-5.
- E.J. Mohammad, A.J. Lafta and S.H. Kahdim, Pol. J. Chem. Technol., 18, 1 (2016); https://doi.org/10.1515/pjct-2016-0041.
- R. Sharma, K. Goyal, A.R. Chattree, T. Baggi and A. Gupta, ISOR J. Appl. Chem., 5, 36 (2013).
- M. Theodore, M. Hosur, J. Thomas and S. Jeelani, Mater. Sci. Eng. A, 528, 1192 (2011); https://doi.org/10.1016/j.msea.2010.09.095.
References
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature, 318, 162 (1985); https://doi.org/10.1038/318162a0.
S. Iijima, Nature, 354, 56 (1991); https://doi.org/10.1038/354056a0.
S. Iijima and T. Ichihashi, Nature, 363, 603 (1993); https://doi.org/10.1038/363603a0.
D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature, 363, 605 (1993); https://doi.org/10.1038/363605a0.
M.S. Dresselhaus, G. Dresselhaus and R. Saito, Phys. Rev. B, 45, 6234 (1992); https://doi.org/10.1103/PhysRevB.45.6234.
M.S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon, 33, 883 (1995); https://doi.org/10.1016/0008-6223(95)00017-8.
W.C. Oha, F.J. Zhang, C.S. Lim and M.L. Chen, J. Ceram. Process. Res., 11, 479 (2010).
C. Darnault, K. Rockne, A. Stevens, G.A. Mansoori and N. Sturchio, Water Environ. Res., 77, 2576 (2005); https://doi.org/10.2175/106143005X54632.
F. Bundy, Physica A, 156, 169 (1989); https://doi.org/10.1016/0378-4371(89)90115-5.
M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 10, 3739 (2010); https://doi.org/10.1166/jnn.2010.2939.
A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim and D. Tomanek, Science, 269, 1550 (1995); https://doi.org/10.1126/science.269.5230.1550.
G. Che, B.B. Lakshmi, E.R. Fisher and C.R. Martin, Nature, 393, 346 (1998); https://doi.org/10.1038/30694.
B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou, Chem. Phys. Lett., 307, 153 (1999); https://doi.org/10.1016/S0009-2614(99)00486-8.
A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, Nature, 386, 377 (1997); https://doi.org/10.1038/386377a0.
A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science, 294, 1317 (2001); https://doi.org/10.1126/science.1065824.
P.C. Collins, M.S. Arnold and P. Avouris, Science, 292, 706 (2001); https://doi.org/10.1126/science.1058782.
C. Gao, Z. Guo, J.-H. Liu and X.-J. Huang, Nanoscale, 4, 1948 (2012); https://doi.org/10.1039/c2nr11757f.
D.R. Kauffman and A. Star, Angew. Chem. Int. Ed., 47, 6550 (2008); https://doi.org/10.1002/anie.200704488.
O. Yu, P. Jing-Cui, W. Hui and P. Zhi-Hua, Chin. Phys. B, 17, 3123 (2008); https://doi.org/10.1088/1674-1056/17/8/059.
N.S. Lewis, Science, 315, 798 (2007); https://doi.org/10.1126/science.1137014.
J. Goldemberg, T.B. Johansson and D. Anderson, World Energy Assessment: Overview: 2004 update, United Nations Development Programme (2004).
J.E. Trancik, S.C. Barton and J. Hone, Nano Lett., 8, 982 (2008); https://doi.org/10.1021/nl071945i.
E. Ramasamy, W.J. Lee, D.Y. Lee and J.S. Song, Electrochem. Commun., 10, 1087 (2008); https://doi.org/10.1016/j.elecom.2008.05.013.
S. Hwang, J. Moon, S. Lee, D. Kim, D. Lee, W. Choi and M. Jeon, Electron. Lett., 43, 1455 (2007); https://doi.org/10.1049/el:20072867.
M. Kang, Y. Han, H. Choi and M. Jeon, Electron. Lett., 46, 1509 (2010); https://doi.org/10.1049/el.2010.2606.
C. Pacholski, A. Kornowski and H. Weller, Angewandte Chemie Int., 41, 1188 (2002); https://doi.org/10.1002/1521-3773(20020402)41:7<1188::AIDANIE1188>3.0.CO;2-5.
Z. Wan, C. Jia, Y. Duan, L. Zhou, Y. Lin and Y. Shi, J. Mater. Chem., 22, 25140 (2012); https://doi.org/10.1039/c2jm34682f.
R.Y.-Y. Lin, Y.-S. Yen, Y.-T. Cheng, C.-P. Lee, Y.-C. Hsu, H.-H. Chou, C.-Y. Hsu, Y.-C. Chen, J.T. Lin, K.-C. Ho and C. Tsai, Org. Lett., 14, 3612 (2012); https://doi.org/10.1021/ol301374c.
M. Birowska, K. Milowska and J.A. Majewski, Acta Phys. Pol. A, 120, 845 (2011); https://doi.org/10.12693/APhysPolA.120.845.
K. Nishimura, N. Okazaki, L. Pan and Y. Nakayama, Jpn. J. Appl. Phys., 43, L471 (2004); https://doi.org/10.1143/JJAP.43.L471.
M.-L. Chen, F.-J. Zhang and W.-C. Oh, J. Korean Ceram. Soc., 45, 651 (2008); https://doi.org/10.4191/KCERS.2008.45.1.651.
C.S. Chen, T.G. Liu, L.W. Lin, X.D. Xie, X.H. Chen, Q.C. Liu, B. Liang, W.W. Yu and C.Y. Qiu, J. Nanopart. Res., 15, 1295 (2013); https://doi.org/10.1007/s11051-012-1295-5.
E.J. Mohammad, A.J. Lafta and S.H. Kahdim, Pol. J. Chem. Technol., 18, 1 (2016); https://doi.org/10.1515/pjct-2016-0041.
R. Sharma, K. Goyal, A.R. Chattree, T. Baggi and A. Gupta, ISOR J. Appl. Chem., 5, 36 (2013).
M. Theodore, M. Hosur, J. Thomas and S. Jeelani, Mater. Sci. Eng. A, 528, 1192 (2011); https://doi.org/10.1016/j.msea.2010.09.095.