Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Biodegradability Nature of Polybenzimidazole Analogs by Modulating Two Histidine Degradation Enzymes (Urocanase and Formiminoglutamase): in silico Approach
Corresponding Author(s) : Rameshkumar Chidambaram
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
Biodegradation pathway of substituted imidazole compounds has been reported to have close analogue to histidine degradation pathway. The present study carried out on four different types of polybenzimidazole (PBI) analogs such as m-PBI (where n = 1, 2 and 3), p-PBI (where n = 1, 2 and 3), pyridine-m-PBI (where n = 1, 2 and 3) and alkylated-m-PBI (where n = 1, 2 and 3). These polybenzimidazole analogs were evaluated on the docking behaviour of urocanase and formiminoglutamase (FIGase) using PatchDock. Besides, molecular physico-chemical, drug-likeness, ADME (absorption, distribution, metabolism and excretion analyses) were studied. ADME analysis showed that m-PBI (where n = 1) and pyridine-m-PBI (where n = 1) predicated to have cytochrome P450 (CYP1A2, CYP2C19, CYP2D6 and CYP3A4) inhibition effect. Docking studies revealed that alkylated-m-PBI (where n = 2) showed the least atomic contact energy (-123.83 kcal/mol) with that of urocanase. Similarly, m-PBI (where n = 1) showed the least ACE (-123.83 kcal/mol) with that of formiminoglutamase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Shimao, Curr. Opin. Biotechnol., 12, 242 (2001); https://doi.org/10.1016/S0958-1669(00)00206-8.
- E.W. Choe and D.D. Choe, ed.: J.C. Salamone, Polymeric Materials Encyclopedia, CRC Press, New York, pp. 5619-5638 (1996).
- H. Lee, D. Stoffey and K. Neville, New Linear Polymers, McGraw-Hill, New-York, Chap. 9 (1967).
- A.H. Frazerr, High Temperature Resistant Polymers, Interscience, New York, vol. 138 (1968).
- D.J. Jones and J. Roziere, J. Membr. Sci., 185, 41 (2001); https://doi.org/10.1016/S0376-7388(00)00633-5.
- D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla and I. Cantero, Chem. Mater., 16, 604 (2004); https://doi.org/10.1021/cm034398k.
- Q. Li, R. He, J.O. Jensen and N.J. Bjerrum, Fuel Cells, 4, 147 (2004); https://doi.org/10.1002/fuce.200400020.
- K.Y. Wang, T.-S. Chung and R. Rajagopalan, Ind. Eng. Chem. Res., 46, 1572 (2007); https://doi.org/10.1021/ie061435j.
- K.Y. Wang, T.-S. Chung and J.-J. Qin, J. Membr. Sci., 300, 6 (2007); https://doi.org/10.1016/j.memsci.2007.05.035.
- Y. Wang, M. Gruender and T.-S. Chung, J. Membr. Sci., 363, 149 (2010); https://doi.org/10.1016/j.memsci.2010.07.024.
- M. Chanda, K.F. O’Driscoll and G.L. Rempel, React. Polym. Ion Exchang. Sorb., 5, 157 (1987); https://doi.org/10.1016/0167-6989(87)90190-5.
- M. Chanda, K.F. O’Driscoll and G.L. Rempel, React. Polym. Ion Exchang. Sorb., 7, 277 (1987); https://doi.org/10.1016/0167-6989(88)90253-X.
- M. Chanda and G.L. Rempel, React. Polym., 11, 165 (1989); https://doi.org/10.1016/0923-1137(89)90099-7.
- D.-Y. Xing, S.-Y. Chan and T.-S. Chung, Green Chem., 14, 1405 (2012); https://doi.org/10.1039/c2gc35134j.
- K.V. Peineman and S.P. Nunes, Membranes for Energy Conversion, Wiley-VCH (2008).
- V. Vijayakumar, C.R. Kumar, A. Suresh, S. Jayalakshmi, U.K. Mudali, N. Sivaraman, Roy. Soc. Open Sci., 5, 171701 (2018); http://dx.doi.org/10.1098/rsos.171701.
- R. Vijayakumar, S.S. Abd Gani and N.F. Mohd Mokhtar, Asian. J. Pharm. Clin. Res., 10, 251 (2017); https://doi.org/10.22159/ajpcr.2017.v10i8.19048.
- V. Vijayakumar, N. Radhakrishnan and C.R. Kumar, In Proceedings of IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), pp. 513-516 (2017); https://doi.org/10.1109/ICSTM.2017.8089213.
- R. Narayanaswamy, L. Kok Wai and I.S. Ismail, Int. J. Food Prop., 18, 2155 (2015); https://doi.org/10.1080/10942912.2014.963870.
- E. Rorije, F. Germa, B. Philipp, B. Schink and D.B. Beimborn, SAR QSAR Environ. Res., 13, 199 (2002); https://doi.org/10.1080/10629360290002271.
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0.
- S. Singh, A.K. Gupta and A. Verma, Res. J. Pharm. Biol. Chem. Sci., 4, 876 (2013).
- J. Wang and L. Urban, Drug Discovery World, 5, 73 (2004).
- D. Kessler, J. Retey and G.E. Schulz, J. Mol. Biol., 342, 183 (2004); https://doi.org/10.1016/j.jmb.2004.07.028.
References
M. Shimao, Curr. Opin. Biotechnol., 12, 242 (2001); https://doi.org/10.1016/S0958-1669(00)00206-8.
E.W. Choe and D.D. Choe, ed.: J.C. Salamone, Polymeric Materials Encyclopedia, CRC Press, New York, pp. 5619-5638 (1996).
H. Lee, D. Stoffey and K. Neville, New Linear Polymers, McGraw-Hill, New-York, Chap. 9 (1967).
A.H. Frazerr, High Temperature Resistant Polymers, Interscience, New York, vol. 138 (1968).
D.J. Jones and J. Roziere, J. Membr. Sci., 185, 41 (2001); https://doi.org/10.1016/S0376-7388(00)00633-5.
D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla and I. Cantero, Chem. Mater., 16, 604 (2004); https://doi.org/10.1021/cm034398k.
Q. Li, R. He, J.O. Jensen and N.J. Bjerrum, Fuel Cells, 4, 147 (2004); https://doi.org/10.1002/fuce.200400020.
K.Y. Wang, T.-S. Chung and R. Rajagopalan, Ind. Eng. Chem. Res., 46, 1572 (2007); https://doi.org/10.1021/ie061435j.
K.Y. Wang, T.-S. Chung and J.-J. Qin, J. Membr. Sci., 300, 6 (2007); https://doi.org/10.1016/j.memsci.2007.05.035.
Y. Wang, M. Gruender and T.-S. Chung, J. Membr. Sci., 363, 149 (2010); https://doi.org/10.1016/j.memsci.2010.07.024.
M. Chanda, K.F. O’Driscoll and G.L. Rempel, React. Polym. Ion Exchang. Sorb., 5, 157 (1987); https://doi.org/10.1016/0167-6989(87)90190-5.
M. Chanda, K.F. O’Driscoll and G.L. Rempel, React. Polym. Ion Exchang. Sorb., 7, 277 (1987); https://doi.org/10.1016/0167-6989(88)90253-X.
M. Chanda and G.L. Rempel, React. Polym., 11, 165 (1989); https://doi.org/10.1016/0923-1137(89)90099-7.
D.-Y. Xing, S.-Y. Chan and T.-S. Chung, Green Chem., 14, 1405 (2012); https://doi.org/10.1039/c2gc35134j.
K.V. Peineman and S.P. Nunes, Membranes for Energy Conversion, Wiley-VCH (2008).
V. Vijayakumar, C.R. Kumar, A. Suresh, S. Jayalakshmi, U.K. Mudali, N. Sivaraman, Roy. Soc. Open Sci., 5, 171701 (2018); http://dx.doi.org/10.1098/rsos.171701.
R. Vijayakumar, S.S. Abd Gani and N.F. Mohd Mokhtar, Asian. J. Pharm. Clin. Res., 10, 251 (2017); https://doi.org/10.22159/ajpcr.2017.v10i8.19048.
V. Vijayakumar, N. Radhakrishnan and C.R. Kumar, In Proceedings of IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), pp. 513-516 (2017); https://doi.org/10.1109/ICSTM.2017.8089213.
R. Narayanaswamy, L. Kok Wai and I.S. Ismail, Int. J. Food Prop., 18, 2155 (2015); https://doi.org/10.1080/10942912.2014.963870.
E. Rorije, F. Germa, B. Philipp, B. Schink and D.B. Beimborn, SAR QSAR Environ. Res., 13, 199 (2002); https://doi.org/10.1080/10629360290002271.
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 46, 3 (2001); https://doi.org/10.1016/S0169-409X(00)00129-0.
S. Singh, A.K. Gupta and A. Verma, Res. J. Pharm. Biol. Chem. Sci., 4, 876 (2013).
J. Wang and L. Urban, Drug Discovery World, 5, 73 (2004).
D. Kessler, J. Retey and G.E. Schulz, J. Mol. Biol., 342, 183 (2004); https://doi.org/10.1016/j.jmb.2004.07.028.