Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Silver Nanoparticles Stabilized in Polymeric Resin: Synthesis, Characterization and Catalytic Activity Study for Reduction of p-Nitrophenol
Corresponding Author(s) : Jaya T. Varkey
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
A facile method is reported to synthesize a stable dispersion of silver nanoparticles in polymeric resin and its catalytic activity studies. The average particle size of silver nanoparticles obtained was 30 nm. CHNS analysis, FTIR spectra SEM, EDX, TEM, UV-visible spectra were the various techniques used for characterization. Catalytic reduction of p-nitrophenol using the synthesized catalyst was the model reaction selected here. The efficiency of catalytic reduction was found to be 93 % in a total time of 24 min.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Schmid, ed.: K.J. Klabunde, In Nanoscale Materials in Chemistry, Wiley-Interscience: New York, pp 15-59 (2001).
- P.K. Sudeep, B.I. Ipe, K.G. Thomas, M.V. George, S. Barazzouk, S. Hotchandani and P.V. Kamat, Nano Lett., 2, 29 (2002); https://doi.org/10.1021/nl010073w.
- M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll and G. Gerber, Appl. Phys., A Mater. Sci. Process., 71, 547 (2000); https://doi.org/10.1007/s003390000712.
- C.-J. Zhong and M.M. Maye, Adv. Mater., 13, 1507 (2001); https://doi.org/10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507>3.0.CO;2-#.
- X.G. Li, S. Takahashi, K. Watanabe, Y. Kikuchi and M. Koishi, Nano Lett., 1, 475 (2001); https://doi.org/10.1021/nl010007u.
- X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong and S. Jin, Mater. Sci. Eng. A, 286, 157 (2000); https://doi.org/10.1016/S0921-5093(00)00628-6.
- Y. Kim, R.C. Johnson and J.T. Hupp, Nano Lett., 1, 165 (2001); https://doi.org/10.1021/nl0100116.
- A. Ruiz, J. Arbiol, A. Cirera, A. Cornet and J.R. Morante, Mater. Sci. Eng. C, 19, 105 (2002); https://doi.org/10.1016/S0928-4931(01)00451-9.
- L. Nicolaisb and G. Carotenuto, Metal-Polymer Nanocomposites, Wiley, Hoboken (2005).
- S. Baby and K.S. Devaky, Polym. Int., 51, 1411 (2002); https://doi.org/10.1002/pi.1067.
- P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young and X.J. Loh, Adv. Sci., 2, 1400010 (2015); https://doi.org/10.1002/advs.201400010.
- M.R. Maurya, M. Kumar and S. Sikarwar, React. Funct. Polym., 66, 808 (2006); https://doi.org/10.1016/j.reactfunctpolym.2005.11.007.
- J.P. Ruparelia, A. Chatterjee, S.P. Duttagupta and S. Mukherji, Acta Biomater., 4, 707 (2008); https://doi.org/10.1016/j.actbio.2007.11.006.
- S. Pandey and S.B. Mishra, Carbohydr. Polym., 113, 525 (2014); https://doi.org/10.1016/j.carbpol.2014.07.047.
- O.V. Ignatov, O.I. Guliy, I.N. Singirtsev, A.A. Shcherbakov, O.E. Makarov and V.V. Ignatov, Appl. Biochem. Microbiol., 38, 240 (2002); https://doi.org/10.1023/A:1015419307819.
- H.S. Rosenkranz and G. Klopman, Mutagenesis, 5, 425 (1990); https://doi.org/10.1093/mutage/5.5.425.
- R.M. Banik, Mayank, R. Prakash and S.N. Upadhyay, Sens. Actuators B Chem., 131, 295 (2008); https://doi.org/10.1016/j.snb.2007.11.022.
- E. Marais and T. Nyokong, J. Hazard. Mater., 152, 293 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.096.
- A.O. O’Connor and L.Y. Young, Environ. Toxicol. Chem., 8, 853 (1989); https://doi.org/10.1002/etc.5620081003.
- M.S. Dieckmann and K.A. Gray, Water Res., 30, 1169 (1996); https://doi.org/10.1016/0043-1354(95)00240-5.
- L.L. Bo, Y.B. Zhang, X. Quan and B. Zhao, J. Hazard. Mater., 153, 1201 (2008); https://doi.org/10.1016/j.jhazmat.2007.09.082.
- N. Modirshahla, M.A. Behnajady and S. Mohammadi-Aghdam, J. Hazard. Mater., 154, 778 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.120.
- P. Canizares, C. Sez, J. Lobato and M.A. Rodrigo, Ind. Eng. Chem. Res., 43, 1944 (2004); https://doi.org/10.1021/ie034025t.
- S. Mulijani, K. Dahlan and A. Wulanawati, Int. J. Mater. Mechan. Manufact., 2, 36 (2014); https://doi.org/10.7763/IJMMM.2014.V2.95.
References
G. Schmid, ed.: K.J. Klabunde, In Nanoscale Materials in Chemistry, Wiley-Interscience: New York, pp 15-59 (2001).
P.K. Sudeep, B.I. Ipe, K.G. Thomas, M.V. George, S. Barazzouk, S. Hotchandani and P.V. Kamat, Nano Lett., 2, 29 (2002); https://doi.org/10.1021/nl010073w.
M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll and G. Gerber, Appl. Phys., A Mater. Sci. Process., 71, 547 (2000); https://doi.org/10.1007/s003390000712.
C.-J. Zhong and M.M. Maye, Adv. Mater., 13, 1507 (2001); https://doi.org/10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507>3.0.CO;2-#.
X.G. Li, S. Takahashi, K. Watanabe, Y. Kikuchi and M. Koishi, Nano Lett., 1, 475 (2001); https://doi.org/10.1021/nl010007u.
X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong and S. Jin, Mater. Sci. Eng. A, 286, 157 (2000); https://doi.org/10.1016/S0921-5093(00)00628-6.
Y. Kim, R.C. Johnson and J.T. Hupp, Nano Lett., 1, 165 (2001); https://doi.org/10.1021/nl0100116.
A. Ruiz, J. Arbiol, A. Cirera, A. Cornet and J.R. Morante, Mater. Sci. Eng. C, 19, 105 (2002); https://doi.org/10.1016/S0928-4931(01)00451-9.
L. Nicolaisb and G. Carotenuto, Metal-Polymer Nanocomposites, Wiley, Hoboken (2005).
S. Baby and K.S. Devaky, Polym. Int., 51, 1411 (2002); https://doi.org/10.1002/pi.1067.
P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young and X.J. Loh, Adv. Sci., 2, 1400010 (2015); https://doi.org/10.1002/advs.201400010.
M.R. Maurya, M. Kumar and S. Sikarwar, React. Funct. Polym., 66, 808 (2006); https://doi.org/10.1016/j.reactfunctpolym.2005.11.007.
J.P. Ruparelia, A. Chatterjee, S.P. Duttagupta and S. Mukherji, Acta Biomater., 4, 707 (2008); https://doi.org/10.1016/j.actbio.2007.11.006.
S. Pandey and S.B. Mishra, Carbohydr. Polym., 113, 525 (2014); https://doi.org/10.1016/j.carbpol.2014.07.047.
O.V. Ignatov, O.I. Guliy, I.N. Singirtsev, A.A. Shcherbakov, O.E. Makarov and V.V. Ignatov, Appl. Biochem. Microbiol., 38, 240 (2002); https://doi.org/10.1023/A:1015419307819.
H.S. Rosenkranz and G. Klopman, Mutagenesis, 5, 425 (1990); https://doi.org/10.1093/mutage/5.5.425.
R.M. Banik, Mayank, R. Prakash and S.N. Upadhyay, Sens. Actuators B Chem., 131, 295 (2008); https://doi.org/10.1016/j.snb.2007.11.022.
E. Marais and T. Nyokong, J. Hazard. Mater., 152, 293 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.096.
A.O. O’Connor and L.Y. Young, Environ. Toxicol. Chem., 8, 853 (1989); https://doi.org/10.1002/etc.5620081003.
M.S. Dieckmann and K.A. Gray, Water Res., 30, 1169 (1996); https://doi.org/10.1016/0043-1354(95)00240-5.
L.L. Bo, Y.B. Zhang, X. Quan and B. Zhao, J. Hazard. Mater., 153, 1201 (2008); https://doi.org/10.1016/j.jhazmat.2007.09.082.
N. Modirshahla, M.A. Behnajady and S. Mohammadi-Aghdam, J. Hazard. Mater., 154, 778 (2008); https://doi.org/10.1016/j.jhazmat.2007.10.120.
P. Canizares, C. Sez, J. Lobato and M.A. Rodrigo, Ind. Eng. Chem. Res., 43, 1944 (2004); https://doi.org/10.1021/ie034025t.
S. Mulijani, K. Dahlan and A. Wulanawati, Int. J. Mater. Mechan. Manufact., 2, 36 (2014); https://doi.org/10.7763/IJMMM.2014.V2.95.