Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on KMnO4 and CH3COOK Properties in Microwave Chemical Reactors
Corresponding Author(s) : Yang Bai
Asian Journal of Chemistry,
Vol. 26 No. 18 (2014): Vol 26 Issue 18
Abstract
In this paper, the changes of complex dielectric property of the potassium permanganate (KMnO4) and potassium acetate (CH3COOK) with different power are calculated and measured. The dielectric property of electrolyte solution with sylvine is studied. It is shown that the changes of real part of the complex permittivity are all small and the changes of the imaginary part of the complex permittivity of electrolyte solution are obvious. By analyzing the systems and variation error with different power, a conclusion is drawn that the measured results are credible and it is found that the imaginary part of K+ electrolyte solution permittivity is directly relative to power. What’s more, this method makes it possible to analyze the nonlinear time-dependent changing of reflection and absorption of microwave by the reactants and it is helpful for the design of microwave chemical reactors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Saito and B. Stuhn, Polymer, 35, 475 (1994); doi:10.1016/0032-3861(94)90499-5.
- C. Ramu, Y.R.V. Naidu and A.K. Sharma, Ferroelectrics, 159, 275 (1994); doi:10.1080/00150199408007585.
- M.M. Mosaad, J. Mater. Sci. Lett., 9, 32 (1990); doi:10.1007/BF00722860.
- S.C. Tjong, Phys. Stat. Solids, 121, 119 (1990); doi:10.1002/pssa.2211210114.
- Y. Tsujita, Y. Murafuji, K. Yano and A. Takizawa, J. Macromol. Sci. Phys. B, 23, 311 (1984); doi:10.1080/00222348408219462.
- J.R. Wang and T.J. Schmugge, IEEE Trans. Geosci. Rem. Sens., 18, 288 (1980); doi:10.1109/TGRS.1980.350304.
- K.M. Golden, In ed.: G. Papanicolaou, The Interaction of Microwave with Sea Ice, Wave Propagation in Complex Media, IMA Volumes in Mathematics and Its Applications, Springer Verlag, Berlin, Germany, Vol. 96, pp. 75-94 (1997).
- W. Linlor, J. Appl. Phys., 51, 2811 (1980); doi:10.1063/1.327947.
- W.C. Chew, J.A. Friedrich and R. Geiger, IEEE Trans. Geosci. Rem. Sens., 28, 207 (1990); doi:10.1109/36.46700.
- L. Blum and J.S. Hoeye, J. Phys. Chem., 81, 1311 (1977); doi:10.1021/j100528a019.
- W.R. Fawcett and A.C. Tikanen, J. Phys. Chem., 100, 4251 (1996); doi:10.1021/jp952379v.
- P. Turq, J. Barthel and M. Chemla, Transport, Relaxation m-l Kinetic Processes in Electrolyte Solutions; Lectures Notes in Chemistry 57, Springer-Verlag, Berlin, Chap. 4 (1992).
References
H. Saito and B. Stuhn, Polymer, 35, 475 (1994); doi:10.1016/0032-3861(94)90499-5.
C. Ramu, Y.R.V. Naidu and A.K. Sharma, Ferroelectrics, 159, 275 (1994); doi:10.1080/00150199408007585.
M.M. Mosaad, J. Mater. Sci. Lett., 9, 32 (1990); doi:10.1007/BF00722860.
S.C. Tjong, Phys. Stat. Solids, 121, 119 (1990); doi:10.1002/pssa.2211210114.
Y. Tsujita, Y. Murafuji, K. Yano and A. Takizawa, J. Macromol. Sci. Phys. B, 23, 311 (1984); doi:10.1080/00222348408219462.
J.R. Wang and T.J. Schmugge, IEEE Trans. Geosci. Rem. Sens., 18, 288 (1980); doi:10.1109/TGRS.1980.350304.
K.M. Golden, In ed.: G. Papanicolaou, The Interaction of Microwave with Sea Ice, Wave Propagation in Complex Media, IMA Volumes in Mathematics and Its Applications, Springer Verlag, Berlin, Germany, Vol. 96, pp. 75-94 (1997).
W. Linlor, J. Appl. Phys., 51, 2811 (1980); doi:10.1063/1.327947.
W.C. Chew, J.A. Friedrich and R. Geiger, IEEE Trans. Geosci. Rem. Sens., 28, 207 (1990); doi:10.1109/36.46700.
L. Blum and J.S. Hoeye, J. Phys. Chem., 81, 1311 (1977); doi:10.1021/j100528a019.
W.R. Fawcett and A.C. Tikanen, J. Phys. Chem., 100, 4251 (1996); doi:10.1021/jp952379v.
P. Turq, J. Barthel and M. Chemla, Transport, Relaxation m-l Kinetic Processes in Electrolyte Solutions; Lectures Notes in Chemistry 57, Springer-Verlag, Berlin, Chap. 4 (1992).