Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Conductivity of Na5[MnCr(OH2)W11O39]·14H2O Treated by Chemically-Heated Diffusion of Er Permeation
Corresponding Author(s) : Li-Mei Dai
Asian Journal of Chemistry,
Vol. 26 No. 18 (2014): Vol 26 Issue 18
Abstract
The gaseous permeation of erbium into the heteropoly compound Na5[MnCr(OH2)W11O39]·14H2O at 540 °C was performed. The studies of IR and XRD indicate that the keggin structure of the heteropoly compound is destroyed and the main product tungsten bronze Na0.54WO3 is obtained after permeation. ICP and XPS were used to determine the percentage composition of the erbium in the permeated sample. Conductivity of compounds before and after permeation were investigated by four-electrode method at room temperature and different measuring temperatures, the results reveal that the conductivity of the permeated compound is 105 times higher than that of the original compound at room temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.C.W. Baker and D.C. Glick, Chem. Rev., 98, 3 (1998); doi:10.1021/cr960392l.
- P. Gouzerh and A. Proust, Chem. Rev., 98, 77 (1998); doi:10.1021/cr960393d.
- P.J. Hagrman, R.C. Finn and J. Zubieta, Solid State Sci., 3, 745 (2001); doi:10.1016/S1293-2558(01)01186-4.
- E.B. Wang, Introduction of Polyacid Chemistry, Chemical Industry Press, Beijing, edn 2 (1998).
- D.E. Katsoulis, Chem. Rev., 98, 359 (1998); doi:10.1021/cr960398a.
- B.B. Zhou, H.Y. Ma and Y.H. Wang, J. Chin. Rare Earth Soc., 19, 393 (2001).
- Q.Y. Wu, Mater. Lett., 50, 78 (2001); doi:10.1016/S0167-577X(00)00417-1.
- B.B. Zhou, Y.D. Wei and Z.H. Li, J. Chin. Rare Earth Soc., 20, 83 (2002).
- Z.H. Li, Y.D. Wei, B.B. Zhou and J.F. Wang, J. Rare Earths, 21, 697 (2003).
- L.L. Wang, B.B. Zhou, J.J. Cao and Y.P. Wang, J. Alloys Comp., 432, 55 (2007); doi:10.1016/j.jallcom.2006.06.027.
- Y.P. Wang, B.B. Zhou and Y.L. Liu, J. Alloys Comp., 463, 333 (2008); doi:10.1016/j.jallcom.2007.09.006.
- L. Li, Y.D. Wei and B.B. Zhou, J. Rare Earths, 21, 113 (2005).
- Y.D. Wei, N. Ma and Y.L. Hou, J. Rare Earths, 19, 214 (2001).
- W. Qingyin, W. Enbo and L. Jingfu, Polyhedron, 12, 2563 (1993); doi:10.1016/S0277-5387(00)80082-0.
- V.P. Tolstoy, L.B. Gulina, G.S. Korotchenkov and V.I. Brynsari, Appl. Surf. Sci., 221, 197 (2004); doi:10.1016/S0169-4332(03)00880-8.
- Q.Y. Wu and G.Y. Meng, Mater. Res. Bull., 35, 85 (2000); doi:10.1016/S0025-5408(00)00187-2.
- Z.H. Li and Y.D. Wei, Chin. J. Inorg. Chem., 19, 1053 (2003).
- X. Li, Z.H. Li and Y.D. Huang, Chin. J. Inorg. Chem., 19, 299 (2003).
- Q.Y. Wu, X.G. Sang, Y.C. He and X. Li, Mater. Lett., 57, 4028 (2003); doi:10.1016/S0167-577X(03)00260-X.
- P. Datta, P. Majewski and F. Aldinger, Mater. Res. Bull., 43, 1 (2008); doi:10.1016/j.materresbull.2007.09.012.
- P. Biloen and G.T. Pott, J. Catal., 30, 169 (1973); doi:10.1016/0021-9517(73)90063-8.
- I.G. Casella and M. Contursi, Electrochim. Acta, 588, 147 (2006); doi:10.1016/j.jelechem.2005.12.015.
- B.A. De Angelis and M. Schiavello, Chem. Phys. Lett., 38, 155 (1976); doi:10.1016/0009-2614(76)80279-5.
- I. Chaitanya Lekshmi and M.S. Hegde, Mater. Res. Bull., 40, 1443 (2005); doi:10.1016/j.materresbull.2005.05.001.
- F.H. Potter and R.G. Egdell, J. Mater. Chem., 4, 1647 (1994); doi:10.1039/jm9940401647.
- A.S. Nowick, in eds.: G.E. Murch and A.S. Nowick, Diffusion in Crystalline Solids, Academic Press, Wiley-Interscience: New York, edn 1 (1984).
References
L.C.W. Baker and D.C. Glick, Chem. Rev., 98, 3 (1998); doi:10.1021/cr960392l.
P. Gouzerh and A. Proust, Chem. Rev., 98, 77 (1998); doi:10.1021/cr960393d.
P.J. Hagrman, R.C. Finn and J. Zubieta, Solid State Sci., 3, 745 (2001); doi:10.1016/S1293-2558(01)01186-4.
E.B. Wang, Introduction of Polyacid Chemistry, Chemical Industry Press, Beijing, edn 2 (1998).
D.E. Katsoulis, Chem. Rev., 98, 359 (1998); doi:10.1021/cr960398a.
B.B. Zhou, H.Y. Ma and Y.H. Wang, J. Chin. Rare Earth Soc., 19, 393 (2001).
Q.Y. Wu, Mater. Lett., 50, 78 (2001); doi:10.1016/S0167-577X(00)00417-1.
B.B. Zhou, Y.D. Wei and Z.H. Li, J. Chin. Rare Earth Soc., 20, 83 (2002).
Z.H. Li, Y.D. Wei, B.B. Zhou and J.F. Wang, J. Rare Earths, 21, 697 (2003).
L.L. Wang, B.B. Zhou, J.J. Cao and Y.P. Wang, J. Alloys Comp., 432, 55 (2007); doi:10.1016/j.jallcom.2006.06.027.
Y.P. Wang, B.B. Zhou and Y.L. Liu, J. Alloys Comp., 463, 333 (2008); doi:10.1016/j.jallcom.2007.09.006.
L. Li, Y.D. Wei and B.B. Zhou, J. Rare Earths, 21, 113 (2005).
Y.D. Wei, N. Ma and Y.L. Hou, J. Rare Earths, 19, 214 (2001).
W. Qingyin, W. Enbo and L. Jingfu, Polyhedron, 12, 2563 (1993); doi:10.1016/S0277-5387(00)80082-0.
V.P. Tolstoy, L.B. Gulina, G.S. Korotchenkov and V.I. Brynsari, Appl. Surf. Sci., 221, 197 (2004); doi:10.1016/S0169-4332(03)00880-8.
Q.Y. Wu and G.Y. Meng, Mater. Res. Bull., 35, 85 (2000); doi:10.1016/S0025-5408(00)00187-2.
Z.H. Li and Y.D. Wei, Chin. J. Inorg. Chem., 19, 1053 (2003).
X. Li, Z.H. Li and Y.D. Huang, Chin. J. Inorg. Chem., 19, 299 (2003).
Q.Y. Wu, X.G. Sang, Y.C. He and X. Li, Mater. Lett., 57, 4028 (2003); doi:10.1016/S0167-577X(03)00260-X.
P. Datta, P. Majewski and F. Aldinger, Mater. Res. Bull., 43, 1 (2008); doi:10.1016/j.materresbull.2007.09.012.
P. Biloen and G.T. Pott, J. Catal., 30, 169 (1973); doi:10.1016/0021-9517(73)90063-8.
I.G. Casella and M. Contursi, Electrochim. Acta, 588, 147 (2006); doi:10.1016/j.jelechem.2005.12.015.
B.A. De Angelis and M. Schiavello, Chem. Phys. Lett., 38, 155 (1976); doi:10.1016/0009-2614(76)80279-5.
I. Chaitanya Lekshmi and M.S. Hegde, Mater. Res. Bull., 40, 1443 (2005); doi:10.1016/j.materresbull.2005.05.001.
F.H. Potter and R.G. Egdell, J. Mater. Chem., 4, 1647 (1994); doi:10.1039/jm9940401647.
A.S. Nowick, in eds.: G.E. Murch and A.S. Nowick, Diffusion in Crystalline Solids, Academic Press, Wiley-Interscience: New York, edn 1 (1984).