Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Temperature on Shape & Optical Properties of MgO/ZnO Nanocomposites
Corresponding Author(s) : K. Tamizh Selvi
Asian Journal of Chemistry,
Vol. 26 No. 18 (2014): Vol 26 Issue 18
Abstract
MgO/ZnO nanocomposites were synthesized by mixing magnesium acetate tetrahydrate and zinc acetate in the equimolar ratio through a simple reflux method. The refluxed sample was annealed at three different temperatures 400, 500 and 600 ºC, respectively. X-ray diffraction spectra (XRD) showed wurtzite ZnO structure with cubic MgO. The HR-SEM picture showed the rod shaped morphology at 400 °C and morphology changed to spherical shape with the increase in temperature to 600 °C. Williamson-Hall plot is used to study the particle size and micro strain of the synthesized MgO/ZnO nanocomposites. The band gap and luminescent property were investigated using ultra violet-visible and photoluminescence spectra. The optical property of MgO/ZnO nanocomposites depends on the annealing temperature which is shown by the increase in the band gap as temperature increases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Gao, W. Cai, P. Shimpi, H.-J. Lin and P.-X. Gao, J. Phys. D Appl. Phys., 43, 272002 (2010); doi:10.1088/0022-3727/43/27/272002.
- R. Kurahatti, A. Surendranathan, S. Kori, N. Singh, A. Kumar and S. Srivastava, Def. Sci. J., 60, 551 (2010); doi:10.14429/dsj.60.578.
- Q.G. Al-Zaidi, A.M. Suhail and W.R. Al-Azawi, Applied Phys. Res., 3, 89 (2011); doi:10.5539/apr.v3n1p89.
- L.I. Trakhtenberg, G.N. Gerasimov, V.F. Gromov, T.V. Belysheva and O.J. Ilegbusi, J. Mater. Sci. Res., 1, 56 (2012); doi:10.5539/jmsr.v1n2p56.
- N. Yasui, H. Nomura and A. Ide-Ektessabi, Thin Solid Films, 447-448, 377 (2004); doi:10.1016/S0040-6090(03)01087-3.
- Y. Zhao and G. Zhu, Mater. Sci. Eng. B, 142, 93 (2007); doi:10.1016/j.mseb.2007.07.001.
- I. Sharma, Ambika and P.B. Barman, Asian J. Chem., 21, S076 (2009).
- S. Thakoor, H.G. Leduce, J.A. Stern, A.P. Thakoor and S.K. Khanna, J. Vac. Sci. Technol. Vacuum, Surfaces and Films, 5, 1721 (1987); doi:10.1116/1.574517.
- K.M. Lang, D.A. Hite, R.W. Simmonds, R. McDermott, D.P. Pappas and J.M. Martinis, Rev. Sci. Instrum., 75, 2726 (2004); doi:10.1063/1.1777388.
- F. Houze, R. Meyer, O. Schneegans and L. Boyer, Appl. Phys. Lett., 69, 1975 (1996); doi:10.1063/1.117179.
- H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi and D.B. Chrisey, Appl. Phys. Lett., 76, 259 (2000); doi:10.1063/1.125740.
- A.P. Chatterjee, P. Mitra and A.K. Mukhopadhyay, J. Mater. Sci., 34, 4225 (1999); doi:10.1023/A:1004694501646.
- S. Basu and A. Dutta, Sens. Actuators B, 22, 83 (1994); doi:10.1016/0925-4005(94)87004-7.
- Y. Chen, D. Bagnall and T. Yao, Mater. Sci. Eng. B, 75, 190 (2000); doi:10.1016/S0921-5107(00)00372-X.
- J.G. Ma, Y.C. Liu and C.L. Shao, J.Y. Zhang, Y.M. Lu, D.Z. Shen and X.W. Fan, Phys. Rev. B, 71, 125430 (2005).
- T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda and H. Koinuma, Appl. Phys. Lett., 78, 1237 (2001); doi:10.1063/1.1350632.
- M.A. Karimi, S.H. Roozbahani, R. Asadiniya, A. Hatefi-Mehrjardi, M.H. Mashhadizadeh, R. Behjatmanesh-Ardakani, M. Mazloum-Ardakani, H. Kargar and S.M. Zebarjad, Int. Nano Lett., 1, 43 (2011).
- M. Gao, J.H. Yang, L.L. Yang, Y.J. Zhang, H.L. Liu, H.G. Fan, J.H. Lang, Y.R. Sui, B. Feng, Y.F. Sun, Z.Q. Zhang and H. Song, Appl. Phys. B, 112, 539 (2013); doi:10.1007/s00340-013-5436-z.
- S. Chitanya Lakshmi, Ananda, R. Somashekar and C. Ranganathaiah, Int. J. Nanosci. Nanotechnol., 3, 47 (2012).
- D. Ramimoghadam, M. Bin Hussein and Y. Taufiq-Yap, Chem. Cent. J., 7, 136 (2013); doi:10.1186/1752-153X-7-136.
- S. Talam, S.R. Karumuri and N. Gunnam, ISRN Nanotechnology, Article ID 372505 (2012); doi:10.5402/2012/372505.
- Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater., 13, 435 (2001); doi:10.1021/cm000607e.
- M. Pashchanka, R.C. Hoffmann and J.J. Schneider, J. Mater. Chem., 20, 957 (2010); doi:10.1039/b917715a.
- B. Cao and W. Cai, J. Phys. Chem. C, 112, 680 (2008); doi:10.1021/jp076870l.
- V.D. Mote, Y. Purushotham and B.N. Dole, J. Theoret. Appl. Phys., 6, 6 (2012); doi:10.1186/2251-7235-6-6.
- G.N.S. Vijayakumar, S. Devashankar, M. Rathnakumari and P. Sureshkumar, J. Alloys Comp., 507, 225 (2010); doi:10.1016/j.jallcom.2010.07.161.
- S. Chawla, K. Jayanthi, H. Chander, D. Haranath, S.K. Halder and M. Kar, J. Alloys Comp., 459, 457 (2008); doi:10.1016/j.jallcom.2007.04.303.
- D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, D. Steeves, B. Kimball and Z.F. Ren, Nanotechnology, 15, 404 (2004); doi:10.1088/0957-4484/15/3/029.
- W.-C. Sun, Y.-C. Yeh, C.-T. Ko, H. He and M.-J. Chen, Nanoscale Res. Lett., 6, 556 (2011); doi:10.1186/1556-276X-6-556.
- X. Qiu, G. Li and L. Li, J. Mater. Res., 22, 908 (2007); doi:10.1557/jmr.2007.0142.
- S.K. Chaudhuri, M. Ghosh, D. Das and A.K. Raychaudhuri, J. Appl. Phys., 108, 064319 (2010); doi:10.1063/1.3483247.
References
H. Gao, W. Cai, P. Shimpi, H.-J. Lin and P.-X. Gao, J. Phys. D Appl. Phys., 43, 272002 (2010); doi:10.1088/0022-3727/43/27/272002.
R. Kurahatti, A. Surendranathan, S. Kori, N. Singh, A. Kumar and S. Srivastava, Def. Sci. J., 60, 551 (2010); doi:10.14429/dsj.60.578.
Q.G. Al-Zaidi, A.M. Suhail and W.R. Al-Azawi, Applied Phys. Res., 3, 89 (2011); doi:10.5539/apr.v3n1p89.
L.I. Trakhtenberg, G.N. Gerasimov, V.F. Gromov, T.V. Belysheva and O.J. Ilegbusi, J. Mater. Sci. Res., 1, 56 (2012); doi:10.5539/jmsr.v1n2p56.
N. Yasui, H. Nomura and A. Ide-Ektessabi, Thin Solid Films, 447-448, 377 (2004); doi:10.1016/S0040-6090(03)01087-3.
Y. Zhao and G. Zhu, Mater. Sci. Eng. B, 142, 93 (2007); doi:10.1016/j.mseb.2007.07.001.
I. Sharma, Ambika and P.B. Barman, Asian J. Chem., 21, S076 (2009).
S. Thakoor, H.G. Leduce, J.A. Stern, A.P. Thakoor and S.K. Khanna, J. Vac. Sci. Technol. Vacuum, Surfaces and Films, 5, 1721 (1987); doi:10.1116/1.574517.
K.M. Lang, D.A. Hite, R.W. Simmonds, R. McDermott, D.P. Pappas and J.M. Martinis, Rev. Sci. Instrum., 75, 2726 (2004); doi:10.1063/1.1777388.
F. Houze, R. Meyer, O. Schneegans and L. Boyer, Appl. Phys. Lett., 69, 1975 (1996); doi:10.1063/1.117179.
H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi and D.B. Chrisey, Appl. Phys. Lett., 76, 259 (2000); doi:10.1063/1.125740.
A.P. Chatterjee, P. Mitra and A.K. Mukhopadhyay, J. Mater. Sci., 34, 4225 (1999); doi:10.1023/A:1004694501646.
S. Basu and A. Dutta, Sens. Actuators B, 22, 83 (1994); doi:10.1016/0925-4005(94)87004-7.
Y. Chen, D. Bagnall and T. Yao, Mater. Sci. Eng. B, 75, 190 (2000); doi:10.1016/S0921-5107(00)00372-X.
J.G. Ma, Y.C. Liu and C.L. Shao, J.Y. Zhang, Y.M. Lu, D.Z. Shen and X.W. Fan, Phys. Rev. B, 71, 125430 (2005).
T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda and H. Koinuma, Appl. Phys. Lett., 78, 1237 (2001); doi:10.1063/1.1350632.
M.A. Karimi, S.H. Roozbahani, R. Asadiniya, A. Hatefi-Mehrjardi, M.H. Mashhadizadeh, R. Behjatmanesh-Ardakani, M. Mazloum-Ardakani, H. Kargar and S.M. Zebarjad, Int. Nano Lett., 1, 43 (2011).
M. Gao, J.H. Yang, L.L. Yang, Y.J. Zhang, H.L. Liu, H.G. Fan, J.H. Lang, Y.R. Sui, B. Feng, Y.F. Sun, Z.Q. Zhang and H. Song, Appl. Phys. B, 112, 539 (2013); doi:10.1007/s00340-013-5436-z.
S. Chitanya Lakshmi, Ananda, R. Somashekar and C. Ranganathaiah, Int. J. Nanosci. Nanotechnol., 3, 47 (2012).
D. Ramimoghadam, M. Bin Hussein and Y. Taufiq-Yap, Chem. Cent. J., 7, 136 (2013); doi:10.1186/1752-153X-7-136.
S. Talam, S.R. Karumuri and N. Gunnam, ISRN Nanotechnology, Article ID 372505 (2012); doi:10.5402/2012/372505.
Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater., 13, 435 (2001); doi:10.1021/cm000607e.
M. Pashchanka, R.C. Hoffmann and J.J. Schneider, J. Mater. Chem., 20, 957 (2010); doi:10.1039/b917715a.
B. Cao and W. Cai, J. Phys. Chem. C, 112, 680 (2008); doi:10.1021/jp076870l.
V.D. Mote, Y. Purushotham and B.N. Dole, J. Theoret. Appl. Phys., 6, 6 (2012); doi:10.1186/2251-7235-6-6.
G.N.S. Vijayakumar, S. Devashankar, M. Rathnakumari and P. Sureshkumar, J. Alloys Comp., 507, 225 (2010); doi:10.1016/j.jallcom.2010.07.161.
S. Chawla, K. Jayanthi, H. Chander, D. Haranath, S.K. Halder and M. Kar, J. Alloys Comp., 459, 457 (2008); doi:10.1016/j.jallcom.2007.04.303.
D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, D. Steeves, B. Kimball and Z.F. Ren, Nanotechnology, 15, 404 (2004); doi:10.1088/0957-4484/15/3/029.
W.-C. Sun, Y.-C. Yeh, C.-T. Ko, H. He and M.-J. Chen, Nanoscale Res. Lett., 6, 556 (2011); doi:10.1186/1556-276X-6-556.
X. Qiu, G. Li and L. Li, J. Mater. Res., 22, 908 (2007); doi:10.1557/jmr.2007.0142.
S.K. Chaudhuri, M. Ghosh, D. Das and A.K. Raychaudhuri, J. Appl. Phys., 108, 064319 (2010); doi:10.1063/1.3483247.