Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation of Electrokinetic Properties of Natural Vine Stem Dispersions as Biosorbent
Corresponding Author(s) : Esra Evrim Yalcinkaya
Asian Journal of Chemistry,
Vol. 26 No. 18 (2014): Vol 26 Issue 18
Abstract
Vine stem is used as a low cost adsorbent for the removal of toxic dyes from the aqueous solutions. In this study, the effects of electrolyte concentration, pH and type of ionic species on the zeta potential of the natural vine stem dispersions were investigated by microelectrophoresis method. z-Potential experiments have been performed to determine the point of zero charge (pzc) and potential determining ions (pdi). The surface charge of vine stem exhibited an increasing negativity as the pH of the solution increased. Vine stem dispersions do not have point of zero charge. A gradual decrease in the z-potential occurs with the monovalent electrolytes when concentration increased. Divalent and heavy metal electrolytes have less negative potentials due to the higher valence of ions. The z-potential values have had a positive sign at trivalent electrolytes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.C. Qi and C. Aldrich, Bioresour. Technol., 99, 5595 (2008); doi:10.1016/j.biortech.2007.10.042.
- G. Annadurai, R. Juang and D. Lee, J. Hazard. Mater. B, 92, 263 (2002); doi:10.1016/S0304-3894(02)00017-1.
- B.H. Hameed, J. Hazard. Mater., 161, 753 (2009); doi:10.1016/j.jhazmat.2008.04.019.
- E.M. Ayan, A. Toptas, G. Kibrislioglu, E.E.S. Yalcinkaya and J. Yanik, Clean – Soil, Air, Water, 39, 406 (2011); doi:10.1002/clen.201000369.
- B.H. Hameed, J. Hazard. Mater., 162, 344 (2009); doi:10.1016/j.jhazmat.2008.05.045.
- A.K. Mittal and C. Venkobachar, J. Environ. Eng., 119, 366 (1993); doi:10.1061/(ASCE)0733-9372(1993)119:2(366).
- S.J. Allen, G. McKay and K.Y.H. Khader, J. Chem. Technol. Biotechnol., 45, 291 (1989); doi:10.1002/jctb.280450406.
- Y.C. Wong, Y.S. Szeto, W.H. Cheung and G. McKay, Process Biochem., 39, 695 (2004); doi:10.1016/S0032-9592(03)00152-3.
- D. Mohan, K.P. Singh, G. Singh and K. Kumar, Ind. Eng. Chem. Res., 41, 3688 (2002); doi:10.1021/ie010667+.
- L. Israel, C. Guler, H. Yilmaz and S. Guler, J. Colloid Interf. Sci., 238, 80 (2001); doi:10.1006/jcis.2001.7465.
- A.H. Gemeay, A.S. El-Sherbiny and A.B. Zaki, J. Colloid Interf. Sci., 245, 116 (2002); doi:10.1006/jcis.2001.7989.
- V. Meshko, L. Markovska, M. Mincheva and A.E. Rodrigues, Water Res., 35, 3357 (2001); doi:10.1016/S0043-1354(01)00056-2.
- H. Chen and J. Zhao, Adsorption, 15, 381 (2009); doi:10.1007/s10450-009-9155-z.
- S. Chandrasekhar and P.N. Pramada, Adsorption, 12, 27 (2006); doi:10.1007/s10450-006-0136-1.
- E. Mavioglu Ayan, P. Secim, S. Karakaya and J. Yanik, Clean – Soil, Air, Water, 40, 856 (2012); doi:10.1002/clen.201100153.
- P. Somasundaran and D.W. Fuerstenau, J. Phys. Chem., 70, 90 (1966); doi:10.1021/j100873a014.
- R.J. Hunter, Zeta potential in Colloid Science, Academic Press, London (1981).
- R.C. Srivastava and P.K. Avasthi, J. Hydrol., 20, 37 (1973); doi:10.1016/0022-1694(73)90043-7.
- S.L. Swartzen-Allen and E. Matijević, J. Colloid Interf. Sci., 50, 143 (1975); doi:10.1016/0021-9797(75)90261-1.
- R.J. Hunter, Zeta Potential in Colloid Science-Principle and Applications, Academic Press, New York (1988).
- S. Rossi, P.F. Luckham and Th.F. Tadros, Colloids Surf., 201, 85 (2002); doi:10.1016/S0927-7757(01)00792-0.
- W. Pitsch, Size Enlargement by Agglomeration, Wiley, New York (1991).
- D.J. Shaw, Colloid and Surface Chemistry, Butterworth-Heinemaun Ltd., Oxford, Great Britain (2010).
- M. Alkan, O. Demirbas and M. Dogan, J. Colloid Interf. Sci., 281, 240 (2005); doi:10.1016/j.jcis.2004.08.036.
- E.E. Saka and C. Guler, Clay Miner., 41, 853 (2006); doi:10.1180/0009855064140224.
- T. Tay, M. Candan, M. Erdem, Y. Çimen and H. Türk, Clean–Soil, Air, Water, 37, 249 (2009); doi:10.1002/clen.200800194.
- A. Delgado, F. Gonzalez-Caballero and J.M. Bruque, J. Colloid Interf. Sci., 113, 203 (1986); doi:10.1016/0021-9797(86)90220-1.
- Y. Horikawa, R.S. Murray and J.P. Quirk, Colloids Surf., 32, 181 (1988); doi:10.1016/0166-6622(88)80015-5.
- G. Zundel, Hydration and Intermolecular Interaction, Academic Press, New York (1969).
- R.O. James, J.A. Davis and J.O. Leckie, J. Colloid Interface Sci., 65, 331 (1978); doi:10.1016/0021-9797(78)90164-9.
- R.M. Pashley and J.P. Quirk, Colloids Surf., 9, 1 (1984); doi:10.1016/0166-6622(84)80138-9.
- A.C. Pierre and K. Ma, J. Eur. Ceram. Soc., 19, 1615 (1999); doi:10.1016/S0955-2219(98)00264-7.
- H. Van Olphen, An Introduction to Clay Colloid Chemistry, Chap. 7. Wiley, New York (1977).
- E.E. Yalcinkaya and C. Guler, Sep. Sci. Technol., 45, 635 (2010); doi:10.1080/01496390903526618.
References
B.C. Qi and C. Aldrich, Bioresour. Technol., 99, 5595 (2008); doi:10.1016/j.biortech.2007.10.042.
G. Annadurai, R. Juang and D. Lee, J. Hazard. Mater. B, 92, 263 (2002); doi:10.1016/S0304-3894(02)00017-1.
B.H. Hameed, J. Hazard. Mater., 161, 753 (2009); doi:10.1016/j.jhazmat.2008.04.019.
E.M. Ayan, A. Toptas, G. Kibrislioglu, E.E.S. Yalcinkaya and J. Yanik, Clean – Soil, Air, Water, 39, 406 (2011); doi:10.1002/clen.201000369.
B.H. Hameed, J. Hazard. Mater., 162, 344 (2009); doi:10.1016/j.jhazmat.2008.05.045.
A.K. Mittal and C. Venkobachar, J. Environ. Eng., 119, 366 (1993); doi:10.1061/(ASCE)0733-9372(1993)119:2(366).
S.J. Allen, G. McKay and K.Y.H. Khader, J. Chem. Technol. Biotechnol., 45, 291 (1989); doi:10.1002/jctb.280450406.
Y.C. Wong, Y.S. Szeto, W.H. Cheung and G. McKay, Process Biochem., 39, 695 (2004); doi:10.1016/S0032-9592(03)00152-3.
D. Mohan, K.P. Singh, G. Singh and K. Kumar, Ind. Eng. Chem. Res., 41, 3688 (2002); doi:10.1021/ie010667+.
L. Israel, C. Guler, H. Yilmaz and S. Guler, J. Colloid Interf. Sci., 238, 80 (2001); doi:10.1006/jcis.2001.7465.
A.H. Gemeay, A.S. El-Sherbiny and A.B. Zaki, J. Colloid Interf. Sci., 245, 116 (2002); doi:10.1006/jcis.2001.7989.
V. Meshko, L. Markovska, M. Mincheva and A.E. Rodrigues, Water Res., 35, 3357 (2001); doi:10.1016/S0043-1354(01)00056-2.
H. Chen and J. Zhao, Adsorption, 15, 381 (2009); doi:10.1007/s10450-009-9155-z.
S. Chandrasekhar and P.N. Pramada, Adsorption, 12, 27 (2006); doi:10.1007/s10450-006-0136-1.
E. Mavioglu Ayan, P. Secim, S. Karakaya and J. Yanik, Clean – Soil, Air, Water, 40, 856 (2012); doi:10.1002/clen.201100153.
P. Somasundaran and D.W. Fuerstenau, J. Phys. Chem., 70, 90 (1966); doi:10.1021/j100873a014.
R.J. Hunter, Zeta potential in Colloid Science, Academic Press, London (1981).
R.C. Srivastava and P.K. Avasthi, J. Hydrol., 20, 37 (1973); doi:10.1016/0022-1694(73)90043-7.
S.L. Swartzen-Allen and E. Matijević, J. Colloid Interf. Sci., 50, 143 (1975); doi:10.1016/0021-9797(75)90261-1.
R.J. Hunter, Zeta Potential in Colloid Science-Principle and Applications, Academic Press, New York (1988).
S. Rossi, P.F. Luckham and Th.F. Tadros, Colloids Surf., 201, 85 (2002); doi:10.1016/S0927-7757(01)00792-0.
W. Pitsch, Size Enlargement by Agglomeration, Wiley, New York (1991).
D.J. Shaw, Colloid and Surface Chemistry, Butterworth-Heinemaun Ltd., Oxford, Great Britain (2010).
M. Alkan, O. Demirbas and M. Dogan, J. Colloid Interf. Sci., 281, 240 (2005); doi:10.1016/j.jcis.2004.08.036.
E.E. Saka and C. Guler, Clay Miner., 41, 853 (2006); doi:10.1180/0009855064140224.
T. Tay, M. Candan, M. Erdem, Y. Çimen and H. Türk, Clean–Soil, Air, Water, 37, 249 (2009); doi:10.1002/clen.200800194.
A. Delgado, F. Gonzalez-Caballero and J.M. Bruque, J. Colloid Interf. Sci., 113, 203 (1986); doi:10.1016/0021-9797(86)90220-1.
Y. Horikawa, R.S. Murray and J.P. Quirk, Colloids Surf., 32, 181 (1988); doi:10.1016/0166-6622(88)80015-5.
G. Zundel, Hydration and Intermolecular Interaction, Academic Press, New York (1969).
R.O. James, J.A. Davis and J.O. Leckie, J. Colloid Interface Sci., 65, 331 (1978); doi:10.1016/0021-9797(78)90164-9.
R.M. Pashley and J.P. Quirk, Colloids Surf., 9, 1 (1984); doi:10.1016/0166-6622(84)80138-9.
A.C. Pierre and K. Ma, J. Eur. Ceram. Soc., 19, 1615 (1999); doi:10.1016/S0955-2219(98)00264-7.
H. Van Olphen, An Introduction to Clay Colloid Chemistry, Chap. 7. Wiley, New York (1977).
E.E. Yalcinkaya and C. Guler, Sep. Sci. Technol., 45, 635 (2010); doi:10.1080/01496390903526618.