Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Stability of Endohedral Hydrogen Doped Boron Nitride Nanocages: A Density Functional Theory Study
Corresponding Author(s) : A. Kinal
Asian Journal of Chemistry,
Vol. 26 No. 18 (2014): Vol 26 Issue 18
Abstract
In this study, the stabilization energies of the nH2@BmNm complexes (m = 12, 24, 36, 48, 60) have been determined by exploiting several density functional theory methods, namely B3LYP, PBE1PBE and wB97X-D. Among these density functional theory methods, wB97X-D is found to be the most appropriate for the systems involving H2 doping in boron nitride nanocages. It predicted that the smallest nanocage, B12N12, has no stable complex and the H2@B24N24, 2H2@B36N36, 4H2@B48N48 and 7H2@B60N60 complexes are the most stable hydrogen-boron nitride complexes. Accordingly, it is found that the number of hydrogen molecules doped inside the most stable complex of each nanocage quadratically depends on nanocage size. This indicates that as the size of nanocage, as well as, the size of the endohedral cavity increases more stable nH2@BmNm complexes are formed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html.
- D.A.J. Rand and R.M. Dell, Hydrogen Energy, Challenges and Prospects (RSC Energy Series), Royal Society of Chemistry; Cambridge, UK, Chap. 5, p. 146 (2008).
- L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001); doi:10.1038/35104634.
- A. Zuttel, A. Remhof, A. Borgschulte and O. Friedrichs, Phil. Trans. R. Soc. A., 368, 3329 (2010); doi:10.1098/rsta.2010.0113.
- J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao and J. Yang, Int. J. Hydrogen Energy, 37, 1048 (2012); doi:10.1016/j.ijhydene.2011.02.125.
- A. Züttel, Mater. Today, 6, 24 (2003); doi:10.1016/S1369-7021(03)00922-2.
- S. Iijima, Nature, 354, 56 (1991); doi:10.1038/354056a0.
- A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, Nature, 386, 377 (1997); doi:10.1038/386377a0.
- C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng and M.S. Dresselhaus, Science, 286, 1127 (1999); doi:10.1126/science.286.5442.1127.
- Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith and R.E. Smalley, Appl. Phys. Lett., 74, 2307 (1999); doi:10.1063/1.123833.
- P. Chen, X. Wu, J. Lin and K. Tan, Science, 285, 91 (1999); doi:10.1126/science.285.5424.91.
- R.T. Yang, Carbon, 38, 623 (2000); doi:10.1016/S0008-6223(99)00273-0.
- H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata and Y. Murakami, Appl. Phys. Lett., 82, 1105 (2003); doi:10.1063/1.1555262.
- M. Ritschel, M. Uhlemann, O. Gutfleisch, A. Leonhardt, A. Graff, Ch. Täschner and J. Fink, Appl. Phys. Lett., 80, 2985 (2002); doi:10.1063/1.1469680.
- G.E. Froudakis, Mater. Today, 14, 324 (2011); doi:10.1016/S1369-7021(11)70162-6.
- T. Oku, A. Nishiwaki and I. Narita, Sci. Technol. Adv. Mater., 5, 635 (2004); doi:10.1016/j.stam.2004.03.017.
- T. Oku, I. Narita and A. Nishiwaki, Mater. Manuf. Process., 19, 1215 (2004); doi:10.1081/AMP-200035336.
- N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie and A. Zettl, Science, 269, 966 (1995); doi:10.1126/science.269.5226.966.
- P. Wang, S. Orimo, T. Matsushima, H. Fujii and G. Majer, Appl. Phys. Lett., 80, 318 (2002); doi:10.1063/1.1432447.
- R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu, J. Am. Chem. Soc.,124, 7672 (2002); doi:10.1021/ja026030e.
- C. Tang, Y. Bando, X. Ding, S. Qi and D. Golberg, J. Am. Chem. Soc., 124, 14550 (2002); doi:10.1021/ja028051e.
- Q. Sun, Q. Wang and P. Jena, Nano Lett., 5, 1273 (2005); doi:10.1021/nl050385p.
- J. Li, J. Lin, X. Xu, X. Zhang, Y. Xue, J. Mi, Z. Mo, Y. Fan, L. Hu, X. Yang, J. Zhang, F. Meng, S. Yuan and C. Tang, Nanotechnology, 24, 155603 (2013); doi:10.1088/0957-4484/24/15/155603.
- H.-S. Wu, X.-Y. Cui, X.-F. Qin, D.L. Strout and H. Jiao, J. Mol. Model., 12, 537 (2006); doi:10.1007/s00894-005-0042-6.
- J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 128, 084106 (2008); doi:10.1063/1.2834918.
- J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 10, 6615 (2008); doi:10.1039/b810189b.
- S. Grimme, WIREs Comput. Mol. Sci., 1, 211 (2011); doi:10.1002/wcms.30.
- J. Beheshtian, M.B. Tabar, Z. Bagheri and A.A. Peyghan, J. Mol. Model., 19, 1445 (2013); doi:10.1007/s00894-012-1702-y.
- C. Adamo and V. Barone, J. Chem. Phys., 110, 6158 (1999); doi:10.1063/1.478522.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M. A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT (2009).
- Y. Liu, Y. Zhao, F. Li and Z. Chen, J. Comput. Chem., 34, 121 (2013); doi:10.1002/jcc.23112.
- E.R. Johnson and G.A. Dilabio, Chem. Phys. Lett., 419, 333 (2006); doi:10.1016/j.cplett.2005.11.099.
References
http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html.
D.A.J. Rand and R.M. Dell, Hydrogen Energy, Challenges and Prospects (RSC Energy Series), Royal Society of Chemistry; Cambridge, UK, Chap. 5, p. 146 (2008).
L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001); doi:10.1038/35104634.
A. Zuttel, A. Remhof, A. Borgschulte and O. Friedrichs, Phil. Trans. R. Soc. A., 368, 3329 (2010); doi:10.1098/rsta.2010.0113.
J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao and J. Yang, Int. J. Hydrogen Energy, 37, 1048 (2012); doi:10.1016/j.ijhydene.2011.02.125.
A. Züttel, Mater. Today, 6, 24 (2003); doi:10.1016/S1369-7021(03)00922-2.
S. Iijima, Nature, 354, 56 (1991); doi:10.1038/354056a0.
A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, Nature, 386, 377 (1997); doi:10.1038/386377a0.
C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng and M.S. Dresselhaus, Science, 286, 1127 (1999); doi:10.1126/science.286.5442.1127.
Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith and R.E. Smalley, Appl. Phys. Lett., 74, 2307 (1999); doi:10.1063/1.123833.
P. Chen, X. Wu, J. Lin and K. Tan, Science, 285, 91 (1999); doi:10.1126/science.285.5424.91.
R.T. Yang, Carbon, 38, 623 (2000); doi:10.1016/S0008-6223(99)00273-0.
H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata and Y. Murakami, Appl. Phys. Lett., 82, 1105 (2003); doi:10.1063/1.1555262.
M. Ritschel, M. Uhlemann, O. Gutfleisch, A. Leonhardt, A. Graff, Ch. Täschner and J. Fink, Appl. Phys. Lett., 80, 2985 (2002); doi:10.1063/1.1469680.
G.E. Froudakis, Mater. Today, 14, 324 (2011); doi:10.1016/S1369-7021(11)70162-6.
T. Oku, A. Nishiwaki and I. Narita, Sci. Technol. Adv. Mater., 5, 635 (2004); doi:10.1016/j.stam.2004.03.017.
T. Oku, I. Narita and A. Nishiwaki, Mater. Manuf. Process., 19, 1215 (2004); doi:10.1081/AMP-200035336.
N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie and A. Zettl, Science, 269, 966 (1995); doi:10.1126/science.269.5226.966.
P. Wang, S. Orimo, T. Matsushima, H. Fujii and G. Majer, Appl. Phys. Lett., 80, 318 (2002); doi:10.1063/1.1432447.
R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu, J. Am. Chem. Soc.,124, 7672 (2002); doi:10.1021/ja026030e.
C. Tang, Y. Bando, X. Ding, S. Qi and D. Golberg, J. Am. Chem. Soc., 124, 14550 (2002); doi:10.1021/ja028051e.
Q. Sun, Q. Wang and P. Jena, Nano Lett., 5, 1273 (2005); doi:10.1021/nl050385p.
J. Li, J. Lin, X. Xu, X. Zhang, Y. Xue, J. Mi, Z. Mo, Y. Fan, L. Hu, X. Yang, J. Zhang, F. Meng, S. Yuan and C. Tang, Nanotechnology, 24, 155603 (2013); doi:10.1088/0957-4484/24/15/155603.
H.-S. Wu, X.-Y. Cui, X.-F. Qin, D.L. Strout and H. Jiao, J. Mol. Model., 12, 537 (2006); doi:10.1007/s00894-005-0042-6.
J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 128, 084106 (2008); doi:10.1063/1.2834918.
J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 10, 6615 (2008); doi:10.1039/b810189b.
S. Grimme, WIREs Comput. Mol. Sci., 1, 211 (2011); doi:10.1002/wcms.30.
J. Beheshtian, M.B. Tabar, Z. Bagheri and A.A. Peyghan, J. Mol. Model., 19, 1445 (2013); doi:10.1007/s00894-012-1702-y.
C. Adamo and V. Barone, J. Chem. Phys., 110, 6158 (1999); doi:10.1063/1.478522.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M. A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT (2009).
Y. Liu, Y. Zhao, F. Li and Z. Chen, J. Comput. Chem., 34, 121 (2013); doi:10.1002/jcc.23112.
E.R. Johnson and G.A. Dilabio, Chem. Phys. Lett., 419, 333 (2006); doi:10.1016/j.cplett.2005.11.099.