Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Trend of Multi-Scale QSAR in Drug Design: A Review
Corresponding Author(s) : Yan-Ling Zhang
Asian Journal of Chemistry,
Vol. 26 No. 18 (2014): Vol 26 Issue 18
Abstract
Quantitative structure-activity relationship (QSAR) is a common method for drug designing. The classification methods of conventional QSAR often consider the dimensions of research measures or the variety of biological activity. The research objects of traditional QSAR are always at the mesoscopic-scale. With the multi-scale development of drug, different strategies of QSAR should be adopted based on the characteristics of an object at a specific scale, which gradually caused the multi-scale development of QSAR in recent years. In this paper, a new classification method of multi-scale QSAR was presented and the existing six QSAR technologies were classified into three scales.Wherein, atom-based QSAR belongs to micro-scale, fragment-based QSAR and small molecular-based QSAR belong to mesoscopic-scale, while macroscopic-scale includes macromolecule-based QSAR, multi-target-based QSAR and cell-based QSAR.This paper hackles the basic concept, historical origins, mature technologies and recent research results of each multi-scale QSAR methods. Generally speaking, multi-scale QSAR is more applicable to QSAR model in today’s trends of drug design. And the new research ideas for further development of QSAR are presented in this review.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Puzyn, B. Rasulev, A. Gajewicz, X.K. Hu, T.P. Dasari, A. Michalkova, H.M. Hwang, A. Toropov, D. Leszczynska and J. Leszczynski, Nat. Nanotechnol., 6, 175 (2011); doi:10.1038/nnano.2011.10.
- Z.L. Xu, Y.D. Shen, W.X. Zheng, R.C. Beier, G.M. Xie, J.X. Dong, J.Y. Yang, H. Wang, H.T. Lei, Z.G. She and Y.M. Sun, Anal. Chem., 82, 9314 (2010); doi:10.1021/ac1018414.
- K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar and R.N. Das, J. Comput. Chem., 34, 1071 (2013); doi:10.1002/jcc.23231.
- A. Tropsha, Molecular Informatics, 29, 476 (2010); doi:10.1002/minf.201000061.
- J. Polanski, Curr. Med. Chem., 16, 3243 (2009); doi:10.2174/092986709788803286.
- K.Z. Myint and X.-Q. Xie, Int. J. Mol. Sci., 11, 3846 (2010); doi:10.3390/ijms11103846.
- A.R. Katritzky and E.V. Gordeeva, J. Chem. Inf. Comput. Sci., 33, 835 (1993); doi:10.1021/ci00016a005.
- P.K. Ojha, I. Mitra, R.N. Das and K. Roy, Chemom. Intell. Lab. Syst., 107, 194 (2011); doi:10.1016/j.chemolab.2011.03.011.
- Y. Wu, C. Nie, R. Wu, S. Jiang and S. Wen, J. Chil. Chem. Soc., 53, 1588 (2008); doi:10.4067/S0717-97072008000300008.
- F.P. Steinmetz, S.J. Enoch, J.C. Madden, M.D. Nelms, N. Rodriguez-Sanchez, P.H. Rowe, Y. Wen and M.T.D. Cronin, Sci. Total Environ., 482-483, 358 (2014); doi:10.1016/j.scitotenv.2014.02.115.
- E. Pourbasheer, A. Beheshti, H. Khajehsharifi, M.R. Ganjali and P. Norouzi, Med. Chem. Res., 22, 4047 (2013); doi:10.1007/s00044-012-0412-4.
- M.C. Sharma, S. Sharma, N.K. Sahu and D.V. Kohli, J. Saudi Chem. Soc., 17, 167 (2013); doi:10.1016/j.jscs.2011.03.005.
- J. Huang and X. Fan, Mol. Pharm., 8, 600 (2011); doi:10.1021/mp100423u.
- A.M. Doweyko, J. Comput. Aided Mol. Des., 22, 81 (2008); doi:10.1007/s10822-007-9162-7.
- C. Peter and K. Kremer, Soft Matter, 5, 4357 (2009); doi:10.1039/b912027k.
- C. Peter and K. Kremer, Faraday Discuss., 144, 9 (2009); doi:10.1039/b919800h.
- P. Sherwood, B.R. Brooks and M.S. Sansom, Curr. Opin. Struct. Biol., 18, 630 (2008); doi:10.1016/j.sbi.2008.07.003.
- J.A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens and R. Rotondo, J. Mol. Graph. Model., 26, 32 (2007); doi:10.1016/j.jmgm.2006.09.007.
- D.A. Winkler, E. Mombelli, A. Pietroiusti, L. Tran, A. Worth, B. Fadeel and M.J. McCall, Toxicology, 313, 15 (2013); doi:10.1016/j.tox.2012.11.005.
- V.N. Viswanadhan, A.K. Ghose, N.B. Hanna, S.S. Matsumoto, T.L. Avery, G.R. Revankar and R.K. Robins, J. Med. Chem., 34, 526 (1991); doi:10.1021/jm00106a007.
- S.S. Kulkarni, L.K. Gediya and V.M. Kulkarni, Bioorg. Med. Chem., 7, 1475 (1999); doi:10.1016/S0968-0896(99)00063-2.
- Y. Marrero-Ponce, M. Iyarreta-Veitia, A. Montero-Torres, C. Romero-Zaldivar, C.A. Brandt, P.E. Avila, K. Kirchgatter and Y. Machado, J. Chem. Inf. Model., 45, 1082 (2005); doi:10.1021/ci050085t.
- J.A. Castillo-Garit, Y. Marrero-Ponce and F. Torrens, Bioorg. Med. Chem., 14, 2398 (2006); doi:10.1016/j.bmc.2005.11.024.
- Y. Marrero-Ponce, A. Meneses-Marcel, J.A. Castillo-Garit, Y. Machado-Tugores, J.A. Escario, A.G. Barrio, D.M. Pereira, J.J. Nogal-Ruiz, V.J. Arán, A.R. Martínez-Fernández, F. Torrens, R. Rotondo, F. Ibarra-Velarde and Y.J. Alvarado, Bioorg. Med. Chem., 14, 6502 (2006); doi:10.1016/j.bmc.2006.06.016.
- B.A. Bhongade and A.K. Gadad, Bioorg. Med. Chem., 12, 2797 (2004); doi:10.1016/j.bmc.2004.02.019.
- S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw and R.A. Friesner, J. Comput. Aided Mol. Des., 20, 647 (2006); doi:10.1007/s10822-006-9087-6.
- U.A. Shah, H.S. Deokar, S.S. Kadam and V.M. Kulkarni, Mol. Divers., 14, 559 (2010); doi:10.1007/s11030-009-9183-3.
- V. Kumar, N. Chadha, A.K. Tiwari, N. Sehgal and A.K. Mishra, Med. Chem. Res., 23, 1114 (2014); doi:10.1007/s00044-013-0704-3.
- S.M. Free and J.W. Wilson, J. Med. Chem., 7, 395 (1964); doi:10.1021/jm00334a001.
- M. Song and M. Clark, J. Chem. Inf. Model., 46, 392 (2006); doi:10.1021/ci050308f.
- Q.-S. Du, R.-B. Huang, Y.-T. Wei, Z.-W. Pang, L.-Q. Du and K.-C. Chou, J. Comput. Chem., 30, 295 (2009); doi:10.1002/jcc.21056.
- L. Maganti, S.K. Das, N.M. Mascarenhas and N. Ghoshal, Molecular Informatics, 30, 863 (2011); doi:10.1002/minf.201100056.
- R.D. Cramer, J. Med. Chem., 46, 374 (2003); doi:10.1021/jm020194o.
- D. Huang, Y. Liu, B. Shi, Y. Li, G. Wang and G. Liang, J. Mol. Graph. Model., 45, 65 (2013); doi:10.1016/j.jmgm.2013.08.003.
- R.D. Cramer, P. Cruz, G. Stahl, W.C. Curtiss, B. Campbell, B.B. Masek and F. Soltanshahi, J. Chem. Inf. Model., 48, 2180 (2008); doi:10.1021/ci8001556.
- C. Hansch and T. Fujita, J. Am. Chem. Soc., 86, 1616 (1964); doi:10.1021/ja01062a035.
- R.D. Cramer, D.E. Patterson and J.D. Bunce, J. Am. Chem. Soc., 110, 5959 (1988); doi:10.1021/ja00226a005.
- J. Verma, V.M. Khedkar and E.C. Coutinho, Curr. Top. Med. Chem., 10, 95 (2010); doi:10.2174/156802610790232260.
- A. Hopfinger, S. Wang, J.S. Tokarski, B. Jin, M. Albuquerque, P.J. Madhav and C. Duraiswami, J. Am. Chem. Soc., 119, 10509 (1997); doi:10.1021/ja9718937.
- A. Vedani and M. Dobler, J. Med. Chem., 45, 2139 (2002); doi:10.1021/jm011005p.
- O. Peristera, M. Spreafico, M. Smiesko, B. Ernst and A. Vedani, Toxicol. Lett., 189, 219 (2009); doi:10.1016/j.toxlet.2009.05.025.
- A. Vedani, M. Dobler and M.A. Lill, J. Med. Chem., 48, 3700 (2005); doi:10.1021/jm050185q.
- Y.D. Ye, Q.H. Liao, J. Wei and Q.Z. Gao, Neurochem. Int., 56, 107 (2010); doi:10.1016/j.neuint.2009.09.008.
- L. Nadasdi and K. Medzihradszky, Biochem. Biophys. Res. Commun., 99, 451 (1981); doi:10.1016/0006-291X(81)91766-6.
- S. Hellberg, M. Sjoestroem, B. Skagerberg and S. Wold, J. Med. Chem., 30, 1126 (1987); doi:10.1021/jm00390a003.
- J. Jonsson, T. Norberg, L. Carlsson, C. Gustafsson and S. Wold, Nucleic Acids Res., 21, 733 (1993); doi:10.1093/nar/21.3.733.
- P. Zhou, X. Chen, Y. Wu and Z. Shang, Amino Acids, 38, 199 (2010); doi:10.1007/s00726-008-0228-1.
- Q.-S. Du, R.-B. Huang and K.-C. Chou, Curr. Protein Pept. Sci., 9, 248 (2008); doi:10.2174/138920308784534005.
- Q.-S. Du, Y.-T. Wei, Z.-W. Pang, K.-C. Chou and R.-B. Huang, Protein Eng. Des. Sel., 20, 417 (2007); doi:10.1093/protein/gzm036.
- S. Vilar, H. Gonzalez-Diaz, L. Santana and E. Uriarte, J. Theor. Biol., 261, 449 (2009); doi:10.1016/j.jtbi.2009.07.031.
- P. Zhou, C. Wang, F. Tian, Y. Ren, C. Yang and J. Huang, J. Comput. Aided Mol. Des., 27, 67 (2013); doi:10.1007/s10822-012-9625-3.
- A. Speck-Planche, V.V. Kleandrova, F. Luan and M.N.D.S. Cordeiro, Bioorg. Med. Chem., 20, 4848 (2012); doi:10.1016/j.bmc.2012.05.071.
- H. Gonzalez-Diaz, F. Prado-Prado and F.M. Ubeira, Curr. Top. Med. Chem., 8, 1676 (2008); doi:10.2174/156802608786786543.
- F.J. Prado-Prado, O.M.de la Vega, E. Uriarte, F.M. Ubeira, K.-C. Chou and H. González-Díaz, Bioorg. Med. Chem., 17, 569 (2009); doi:10.1016/j.bmc.2008.11.075.
- A. Speck-Planche, V.V. Kleandrova, F. Luan and M. Natalia D.S. Cordeiro, Curr. Alzheimer Res., 10, 117 (2013); doi:10.2174/1567205011310020001.
- M. Gupta and A.K. Madan, Lett. Drug Des. Discov., 11, 454 (2014); doi:10.2174/15701808113106660089.
- E. Tenorio-Borroto, C.G. Peñuelas Rivas, J.C. Vásquez Chagoyán, N. Castañedo, F.J. Prado-Prado, X. García-Mera and H. González-Díaz, Bioorg. Med. Chem., 20, 6181 (2012); doi:10.1016/j.bmc.2012.07.020.
- A. Speck-Planche, V.V. Kleandrova, F. Luan and M.N.D.S. Cordeiro, Mol. Biosyst., 8, 2188 (2012); doi:10.1039/c2mb25093d.
- S. Balaz and S.K. Natesan, Cell-QSAR, Abstracts of Papers of the American Chemical Society, p. 242 (2011).
- S.K. Natesan, 3D-QSAR: Multispecies Binding and Extension for Cell-Based Activities, North Dakota State University (2011).
- S. Natesan, T. Wang, V. Lukacova, V. Bartus, A. Khandelwal, R. Subramaniam and S. Balaz, J. Med. Chem., 55, 3699 (2012); doi:10.1021/jm201371y.
References
T. Puzyn, B. Rasulev, A. Gajewicz, X.K. Hu, T.P. Dasari, A. Michalkova, H.M. Hwang, A. Toropov, D. Leszczynska and J. Leszczynski, Nat. Nanotechnol., 6, 175 (2011); doi:10.1038/nnano.2011.10.
Z.L. Xu, Y.D. Shen, W.X. Zheng, R.C. Beier, G.M. Xie, J.X. Dong, J.Y. Yang, H. Wang, H.T. Lei, Z.G. She and Y.M. Sun, Anal. Chem., 82, 9314 (2010); doi:10.1021/ac1018414.
K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar and R.N. Das, J. Comput. Chem., 34, 1071 (2013); doi:10.1002/jcc.23231.
A. Tropsha, Molecular Informatics, 29, 476 (2010); doi:10.1002/minf.201000061.
J. Polanski, Curr. Med. Chem., 16, 3243 (2009); doi:10.2174/092986709788803286.
K.Z. Myint and X.-Q. Xie, Int. J. Mol. Sci., 11, 3846 (2010); doi:10.3390/ijms11103846.
A.R. Katritzky and E.V. Gordeeva, J. Chem. Inf. Comput. Sci., 33, 835 (1993); doi:10.1021/ci00016a005.
P.K. Ojha, I. Mitra, R.N. Das and K. Roy, Chemom. Intell. Lab. Syst., 107, 194 (2011); doi:10.1016/j.chemolab.2011.03.011.
Y. Wu, C. Nie, R. Wu, S. Jiang and S. Wen, J. Chil. Chem. Soc., 53, 1588 (2008); doi:10.4067/S0717-97072008000300008.
F.P. Steinmetz, S.J. Enoch, J.C. Madden, M.D. Nelms, N. Rodriguez-Sanchez, P.H. Rowe, Y. Wen and M.T.D. Cronin, Sci. Total Environ., 482-483, 358 (2014); doi:10.1016/j.scitotenv.2014.02.115.
E. Pourbasheer, A. Beheshti, H. Khajehsharifi, M.R. Ganjali and P. Norouzi, Med. Chem. Res., 22, 4047 (2013); doi:10.1007/s00044-012-0412-4.
M.C. Sharma, S. Sharma, N.K. Sahu and D.V. Kohli, J. Saudi Chem. Soc., 17, 167 (2013); doi:10.1016/j.jscs.2011.03.005.
J. Huang and X. Fan, Mol. Pharm., 8, 600 (2011); doi:10.1021/mp100423u.
A.M. Doweyko, J. Comput. Aided Mol. Des., 22, 81 (2008); doi:10.1007/s10822-007-9162-7.
C. Peter and K. Kremer, Soft Matter, 5, 4357 (2009); doi:10.1039/b912027k.
C. Peter and K. Kremer, Faraday Discuss., 144, 9 (2009); doi:10.1039/b919800h.
P. Sherwood, B.R. Brooks and M.S. Sansom, Curr. Opin. Struct. Biol., 18, 630 (2008); doi:10.1016/j.sbi.2008.07.003.
J.A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens and R. Rotondo, J. Mol. Graph. Model., 26, 32 (2007); doi:10.1016/j.jmgm.2006.09.007.
D.A. Winkler, E. Mombelli, A. Pietroiusti, L. Tran, A. Worth, B. Fadeel and M.J. McCall, Toxicology, 313, 15 (2013); doi:10.1016/j.tox.2012.11.005.
V.N. Viswanadhan, A.K. Ghose, N.B. Hanna, S.S. Matsumoto, T.L. Avery, G.R. Revankar and R.K. Robins, J. Med. Chem., 34, 526 (1991); doi:10.1021/jm00106a007.
S.S. Kulkarni, L.K. Gediya and V.M. Kulkarni, Bioorg. Med. Chem., 7, 1475 (1999); doi:10.1016/S0968-0896(99)00063-2.
Y. Marrero-Ponce, M. Iyarreta-Veitia, A. Montero-Torres, C. Romero-Zaldivar, C.A. Brandt, P.E. Avila, K. Kirchgatter and Y. Machado, J. Chem. Inf. Model., 45, 1082 (2005); doi:10.1021/ci050085t.
J.A. Castillo-Garit, Y. Marrero-Ponce and F. Torrens, Bioorg. Med. Chem., 14, 2398 (2006); doi:10.1016/j.bmc.2005.11.024.
Y. Marrero-Ponce, A. Meneses-Marcel, J.A. Castillo-Garit, Y. Machado-Tugores, J.A. Escario, A.G. Barrio, D.M. Pereira, J.J. Nogal-Ruiz, V.J. Arán, A.R. Martínez-Fernández, F. Torrens, R. Rotondo, F. Ibarra-Velarde and Y.J. Alvarado, Bioorg. Med. Chem., 14, 6502 (2006); doi:10.1016/j.bmc.2006.06.016.
B.A. Bhongade and A.K. Gadad, Bioorg. Med. Chem., 12, 2797 (2004); doi:10.1016/j.bmc.2004.02.019.
S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw and R.A. Friesner, J. Comput. Aided Mol. Des., 20, 647 (2006); doi:10.1007/s10822-006-9087-6.
U.A. Shah, H.S. Deokar, S.S. Kadam and V.M. Kulkarni, Mol. Divers., 14, 559 (2010); doi:10.1007/s11030-009-9183-3.
V. Kumar, N. Chadha, A.K. Tiwari, N. Sehgal and A.K. Mishra, Med. Chem. Res., 23, 1114 (2014); doi:10.1007/s00044-013-0704-3.
S.M. Free and J.W. Wilson, J. Med. Chem., 7, 395 (1964); doi:10.1021/jm00334a001.
M. Song and M. Clark, J. Chem. Inf. Model., 46, 392 (2006); doi:10.1021/ci050308f.
Q.-S. Du, R.-B. Huang, Y.-T. Wei, Z.-W. Pang, L.-Q. Du and K.-C. Chou, J. Comput. Chem., 30, 295 (2009); doi:10.1002/jcc.21056.
L. Maganti, S.K. Das, N.M. Mascarenhas and N. Ghoshal, Molecular Informatics, 30, 863 (2011); doi:10.1002/minf.201100056.
R.D. Cramer, J. Med. Chem., 46, 374 (2003); doi:10.1021/jm020194o.
D. Huang, Y. Liu, B. Shi, Y. Li, G. Wang and G. Liang, J. Mol. Graph. Model., 45, 65 (2013); doi:10.1016/j.jmgm.2013.08.003.
R.D. Cramer, P. Cruz, G. Stahl, W.C. Curtiss, B. Campbell, B.B. Masek and F. Soltanshahi, J. Chem. Inf. Model., 48, 2180 (2008); doi:10.1021/ci8001556.
C. Hansch and T. Fujita, J. Am. Chem. Soc., 86, 1616 (1964); doi:10.1021/ja01062a035.
R.D. Cramer, D.E. Patterson and J.D. Bunce, J. Am. Chem. Soc., 110, 5959 (1988); doi:10.1021/ja00226a005.
J. Verma, V.M. Khedkar and E.C. Coutinho, Curr. Top. Med. Chem., 10, 95 (2010); doi:10.2174/156802610790232260.
A. Hopfinger, S. Wang, J.S. Tokarski, B. Jin, M. Albuquerque, P.J. Madhav and C. Duraiswami, J. Am. Chem. Soc., 119, 10509 (1997); doi:10.1021/ja9718937.
A. Vedani and M. Dobler, J. Med. Chem., 45, 2139 (2002); doi:10.1021/jm011005p.
O. Peristera, M. Spreafico, M. Smiesko, B. Ernst and A. Vedani, Toxicol. Lett., 189, 219 (2009); doi:10.1016/j.toxlet.2009.05.025.
A. Vedani, M. Dobler and M.A. Lill, J. Med. Chem., 48, 3700 (2005); doi:10.1021/jm050185q.
Y.D. Ye, Q.H. Liao, J. Wei and Q.Z. Gao, Neurochem. Int., 56, 107 (2010); doi:10.1016/j.neuint.2009.09.008.
L. Nadasdi and K. Medzihradszky, Biochem. Biophys. Res. Commun., 99, 451 (1981); doi:10.1016/0006-291X(81)91766-6.
S. Hellberg, M. Sjoestroem, B. Skagerberg and S. Wold, J. Med. Chem., 30, 1126 (1987); doi:10.1021/jm00390a003.
J. Jonsson, T. Norberg, L. Carlsson, C. Gustafsson and S. Wold, Nucleic Acids Res., 21, 733 (1993); doi:10.1093/nar/21.3.733.
P. Zhou, X. Chen, Y. Wu and Z. Shang, Amino Acids, 38, 199 (2010); doi:10.1007/s00726-008-0228-1.
Q.-S. Du, R.-B. Huang and K.-C. Chou, Curr. Protein Pept. Sci., 9, 248 (2008); doi:10.2174/138920308784534005.
Q.-S. Du, Y.-T. Wei, Z.-W. Pang, K.-C. Chou and R.-B. Huang, Protein Eng. Des. Sel., 20, 417 (2007); doi:10.1093/protein/gzm036.
S. Vilar, H. Gonzalez-Diaz, L. Santana and E. Uriarte, J. Theor. Biol., 261, 449 (2009); doi:10.1016/j.jtbi.2009.07.031.
P. Zhou, C. Wang, F. Tian, Y. Ren, C. Yang and J. Huang, J. Comput. Aided Mol. Des., 27, 67 (2013); doi:10.1007/s10822-012-9625-3.
A. Speck-Planche, V.V. Kleandrova, F. Luan and M.N.D.S. Cordeiro, Bioorg. Med. Chem., 20, 4848 (2012); doi:10.1016/j.bmc.2012.05.071.
H. Gonzalez-Diaz, F. Prado-Prado and F.M. Ubeira, Curr. Top. Med. Chem., 8, 1676 (2008); doi:10.2174/156802608786786543.
F.J. Prado-Prado, O.M.de la Vega, E. Uriarte, F.M. Ubeira, K.-C. Chou and H. González-Díaz, Bioorg. Med. Chem., 17, 569 (2009); doi:10.1016/j.bmc.2008.11.075.
A. Speck-Planche, V.V. Kleandrova, F. Luan and M. Natalia D.S. Cordeiro, Curr. Alzheimer Res., 10, 117 (2013); doi:10.2174/1567205011310020001.
M. Gupta and A.K. Madan, Lett. Drug Des. Discov., 11, 454 (2014); doi:10.2174/15701808113106660089.
E. Tenorio-Borroto, C.G. Peñuelas Rivas, J.C. Vásquez Chagoyán, N. Castañedo, F.J. Prado-Prado, X. García-Mera and H. González-Díaz, Bioorg. Med. Chem., 20, 6181 (2012); doi:10.1016/j.bmc.2012.07.020.
A. Speck-Planche, V.V. Kleandrova, F. Luan and M.N.D.S. Cordeiro, Mol. Biosyst., 8, 2188 (2012); doi:10.1039/c2mb25093d.
S. Balaz and S.K. Natesan, Cell-QSAR, Abstracts of Papers of the American Chemical Society, p. 242 (2011).
S.K. Natesan, 3D-QSAR: Multispecies Binding and Extension for Cell-Based Activities, North Dakota State University (2011).
S. Natesan, T. Wang, V. Lukacova, V. Bartus, A. Khandelwal, R. Subramaniam and S. Balaz, J. Med. Chem., 55, 3699 (2012); doi:10.1021/jm201371y.