Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation and Enhanced Photocatalytic Hydrogen Evolution Activity of Graphene Based Pd and TiO2 Composites Synthesized by Chemical Vapour Deposition Method
Corresponding Author(s) : Won-Chun Oh
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
In this paper, we report a new device for photocatalytic performance with two kinds of graphene. The chemical vapour deposition growth graphene (CVDG) and chemically synthesized graphene were further doped with palladium and titanium dioxide to form the photocatalyst, respectively. The synthesized graphene and as-prepared photocatalysts were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray (EDX) spectroscopy, TEM (HRTEM) and Raman spectra. From the photocatalytic H2 evolution effect, it illustrates that the chemical vapour deposition growth graphene based photocatalyst presents better effect than that of chemically synthesized graphene. The present chemical vapour deposition growth graphene based photocatalyst have a potential catalytic conversion of solar energy to clean hydrogen energy under visible light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.C. Ferrari and D.M. Basko, Nat. Nanotechnol., 8, 235 (2013); https://doi.org/10.1038/nnano.2013.46.
- A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski and A.A. Bol, ACS Nano, 4, 3839 (2010); https://doi.org/10.1021/nn100508g.
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009); https://doi.org/10.1021/nl801827v.
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872.
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Phys Rev Lett., 97, 187401 (2006); https://doi.org/10.1103/PhysRevLett.97.187401.
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109.
- C. Berger, Z. Song, T. Li et al., Science, 312, 1191 (2006); https://doi.org/10.1126/science.1125925.
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996.
- C. Tao, L. Jiao, O.V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H. Dai and M.F. Crommie, Nat. Phys., 7, 616 (2011); https://doi.org/10.1038/nphys1991.
- C. Kang, D.H. Jung and J.S. Lee, J. Nanosci. Nanotechnol., 15, 9098 (2015); https://doi.org/10.1166/jnn.2015.11557.
- H. Huang, W. Zhang, Y. Fu and X. Wang, Electrochim. Acta, 152, 480 (2015); https://doi.org/10.1016/j.electacta.2014.11.162.
- H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie and W.-J. Zhang, J. Am. Chem. Soc., 134, 3627 (2012); https://doi.org/10.1021/ja2105976.
- H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui and H. Dai, J. Am. Chem. Soc., 132, 13978 (2010); https://doi.org/10.1021/ja105296a.
- J. Aguado, R. Vangrieken, M. Lopezmunoz and J. Marugan, J. Appl. Catal. A, 312, 202 (2006); https://doi.org/10.1016/j.apcata.2006.07.003.
- J. Coraux, A.T. N’Diaye, C. Busse and T. Michely, Nano Lett., 8, 565 (2008); https://doi.org/10.1021/nl0728874.
- J. Zhao, S. Pei, W. Ren, L. Gao and H.M. Cheng, ACS Nano, 4, 5245 (2010); https://doi.org/10.1021/nn1015506.
- J.K. Wassei and R.B. Kaner, Mater. Today, 13, 52 (2010); https://doi.org/10.1016/S1369-7021(10)70034-1.
- K. Ariyawong, C. Chatillon, E. Blanquet, J.-M. Dedulle and D. Chaussende, CrystEngComm, 18, 2119 (2016); https://doi.org/10.1039/C5CE02480C.
- S.-M. Jeong, D.-H. Nam, B.G. Kim, J.-Y. Yoon, M.-H. Lee, K.-H. Kim, Y.J. Yoon and W.-S. Seo, Appl. Phys. Expr., 7, 025501 (2014); https://doi.org/10.7567/APEX.7.025501.
- K.A. Ritter and J.W. Lyding, Nat. Mater., 8, 235 (2009); https://doi.org/10.1038/nmat2378.
- A. Mukherji, B. Seger, G.Q. (Max) Lu and L. Wang, ACS Nano, 5, 3483 (2011); https://doi.org/10.1021/nn102469e.
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B.H. Hong, Nature, 457, 706 (2009); https://doi.org/10.1038/nature07719.
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438, 197 (2005); https://doi.org/10.1038/nature04233.
- K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber and T. Seyller, Nat. Mater., 8, 203 (2009); https://doi.org/10.1038/nmat2382.
- K. Ullah, S. Ye, L. Zhu, Z.-D. Meng, S. Sarkar and W.-C. Oh, Mater. Sci. Eng. B, 180, 20 (2014); https://doi.org/10.1016/j.mseb.2013.10.014.
- L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao and H.-M. Cheng, Nat. Commun., 3, 699 (2012); https://doi.org/10.1038/ncomms1702.
- L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson and C. Zhou, ACS Nano, 4, 2865 (2010); https://doi.org/10.1021/nn901587x.
- L.M. Malard, M.A. Pimenta, G. Dresselhaus and M.S. Dresselhaus, Phys. Rep., 473, 51 (2009); https://doi.org/10.1016/j.physrep.2009.02.003.
- L. Gong, I.A. Kinloch, R.J. Young, I. Riaz, R. Jalil and K.S. Novoselov, Adv. Mater., 22, 2694 (2010); https://doi.org/10.1002/adma.200904264.
- M. Pan, E.C. Girão, X. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier and M.S. Dresselhaus, Nano Lett., 12, 1928 (2012); https://doi.org/10.1021/nl204392s.
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y.
- P. Ang, W. Chen, A.T.S. Wee and K.P. Loh, J. Am. Chem. Soc., 130, 14392 (2008); https://doi.org/10.1021/ja805090z.
- P. Sutter, Nat. Mater., 8, 171 (2009); https://doi.org/10.1038/nmat2392.
- P.W. Sutter, J.I. Flege and E.A. Sutter, Nat. Mater., 7, 406 (2008); https://doi.org/10.1038/nmat2166.
- P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi, K. Watanabe, D. Abanin, Z. Papi, P. Cadden-Zimansky, J. Hone, P. Kim and C.R. Dean, Science, 345, 61 (2014); https://doi.org/10.1126/science.1252875.
- Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen and S.-S. Pei, Appl. Phys. Lett., 93, 113103 (2008); https://doi.org/10.1063/1.2982585.
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Science, 320, 1308 (2008); https://doi.org/10.1126/science.1156965.
- S. Hou, M.L. Kasner, S. Su, K. Patel and R. Cuellari, J. Phys. Chem. C, 114, 14915 (2010); https://doi.org/10.1021/jp1020593.
- S. Liu, M.Q. Yang and Y.J. Xu, J. Mater. Chem. A Mater. Energy Sustain., 2, 430 (2014); https://doi.org/10.1039/C3TA13892E.
- S. Reich and C. Thomsen, Philos. Trans. R. Soc. Lond. A, 362, 2271 (2004); https://doi.org/10.1098/rsta.2004.1454.
- U. Ritter, P. Scharff, C. Siegmund, O.P. Dmytrenko, N.P. Kulish, Y.I. Prylutskyy, N.M. Belyi, V.A. Gubanov, L.I. Komarova, S.V. Lizunova, V.G. Poroshin, V.V. Shlapatskaya and H. Bernas, Carbon, 44, 2694 (2006); https://doi.org/10.1016/j.carbon.2006.04.010.
- W. Han, L. Ren, Z. Zhang, X. Qi, Y. Liu, Z. Huang and J. Zhong, Ceram. Int., 41, 7471 (2015); https://doi.org/10.1016/j.ceramint.2015.02.068.
- Q. Chen, M. Zhou, Z. Zhang, T. Tang and T. Wang, J. Mater. Sci.: Mater. Electron., 28, 9416 (2017). https://doi.org/10.1007/s10854-017-6683-2.
- X. Du, I. Skachko, A. Barker and E.Y. Andrei, Nat. Nanotechnol., 3, 491 (2008); https://doi.org/10.1038/nnano.2008.199.
- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); https://doi.org/10.1126/science.1171245.
- X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo and R.S. Ruoff, Nano Lett., 9, 4359 (2009); https://doi.org/10.1021/nl902623y.
- X. Qi, K. Pu, H. Li, X. Zhou, S. Wu, Q. Fan, B. Liu, F. Boey, W. Huang and H. Zhang, Angew. Chem. Int. Ed., 49, 9426 (2010); https://doi.org/10.1002/anie.201004497.
- X. Wang, L. Zhi, N. Tsao, Z. Tomovic, J. Li and K. Mullen, Angew. Chem. Int. Ed., 47, 2990 (2008); https://doi.org/10.1002/anie.200704909.
- X. Zhang, O.V. Yazyev, J. Feng, L. Xie, C. Tao, Y.-C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S.G. Louie, H. Dai and M.F. Crommie, ACS Nano, 7, 198 (2013); https://doi.org/10.1021/nn303730v.
- Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill and P. Avouris, Science, 327, 662 (2010); https://doi.org/10.1126/science.1184289.
References
A.C. Ferrari and D.M. Basko, Nat. Nanotechnol., 8, 235 (2013); https://doi.org/10.1038/nnano.2013.46.
A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski and A.A. Bol, ACS Nano, 4, 3839 (2010); https://doi.org/10.1021/nn100508g.
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009); https://doi.org/10.1021/nl801827v.
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872.
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Phys Rev Lett., 97, 187401 (2006); https://doi.org/10.1103/PhysRevLett.97.187401.
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109.
C. Berger, Z. Song, T. Li et al., Science, 312, 1191 (2006); https://doi.org/10.1126/science.1125925.
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996.
C. Tao, L. Jiao, O.V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H. Dai and M.F. Crommie, Nat. Phys., 7, 616 (2011); https://doi.org/10.1038/nphys1991.
C. Kang, D.H. Jung and J.S. Lee, J. Nanosci. Nanotechnol., 15, 9098 (2015); https://doi.org/10.1166/jnn.2015.11557.
H. Huang, W. Zhang, Y. Fu and X. Wang, Electrochim. Acta, 152, 480 (2015); https://doi.org/10.1016/j.electacta.2014.11.162.
H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie and W.-J. Zhang, J. Am. Chem. Soc., 134, 3627 (2012); https://doi.org/10.1021/ja2105976.
H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui and H. Dai, J. Am. Chem. Soc., 132, 13978 (2010); https://doi.org/10.1021/ja105296a.
J. Aguado, R. Vangrieken, M. Lopezmunoz and J. Marugan, J. Appl. Catal. A, 312, 202 (2006); https://doi.org/10.1016/j.apcata.2006.07.003.
J. Coraux, A.T. N’Diaye, C. Busse and T. Michely, Nano Lett., 8, 565 (2008); https://doi.org/10.1021/nl0728874.
J. Zhao, S. Pei, W. Ren, L. Gao and H.M. Cheng, ACS Nano, 4, 5245 (2010); https://doi.org/10.1021/nn1015506.
J.K. Wassei and R.B. Kaner, Mater. Today, 13, 52 (2010); https://doi.org/10.1016/S1369-7021(10)70034-1.
K. Ariyawong, C. Chatillon, E. Blanquet, J.-M. Dedulle and D. Chaussende, CrystEngComm, 18, 2119 (2016); https://doi.org/10.1039/C5CE02480C.
S.-M. Jeong, D.-H. Nam, B.G. Kim, J.-Y. Yoon, M.-H. Lee, K.-H. Kim, Y.J. Yoon and W.-S. Seo, Appl. Phys. Expr., 7, 025501 (2014); https://doi.org/10.7567/APEX.7.025501.
K.A. Ritter and J.W. Lyding, Nat. Mater., 8, 235 (2009); https://doi.org/10.1038/nmat2378.
A. Mukherji, B. Seger, G.Q. (Max) Lu and L. Wang, ACS Nano, 5, 3483 (2011); https://doi.org/10.1021/nn102469e.
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B.H. Hong, Nature, 457, 706 (2009); https://doi.org/10.1038/nature07719.
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438, 197 (2005); https://doi.org/10.1038/nature04233.
K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber and T. Seyller, Nat. Mater., 8, 203 (2009); https://doi.org/10.1038/nmat2382.
K. Ullah, S. Ye, L. Zhu, Z.-D. Meng, S. Sarkar and W.-C. Oh, Mater. Sci. Eng. B, 180, 20 (2014); https://doi.org/10.1016/j.mseb.2013.10.014.
L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao and H.-M. Cheng, Nat. Commun., 3, 699 (2012); https://doi.org/10.1038/ncomms1702.
L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson and C. Zhou, ACS Nano, 4, 2865 (2010); https://doi.org/10.1021/nn901587x.
L.M. Malard, M.A. Pimenta, G. Dresselhaus and M.S. Dresselhaus, Phys. Rep., 473, 51 (2009); https://doi.org/10.1016/j.physrep.2009.02.003.
L. Gong, I.A. Kinloch, R.J. Young, I. Riaz, R. Jalil and K.S. Novoselov, Adv. Mater., 22, 2694 (2010); https://doi.org/10.1002/adma.200904264.
M. Pan, E.C. Girão, X. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier and M.S. Dresselhaus, Nano Lett., 12, 1928 (2012); https://doi.org/10.1021/nl204392s.
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y.
P. Ang, W. Chen, A.T.S. Wee and K.P. Loh, J. Am. Chem. Soc., 130, 14392 (2008); https://doi.org/10.1021/ja805090z.
P. Sutter, Nat. Mater., 8, 171 (2009); https://doi.org/10.1038/nmat2392.
P.W. Sutter, J.I. Flege and E.A. Sutter, Nat. Mater., 7, 406 (2008); https://doi.org/10.1038/nmat2166.
P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi, K. Watanabe, D. Abanin, Z. Papi, P. Cadden-Zimansky, J. Hone, P. Kim and C.R. Dean, Science, 345, 61 (2014); https://doi.org/10.1126/science.1252875.
Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen and S.-S. Pei, Appl. Phys. Lett., 93, 113103 (2008); https://doi.org/10.1063/1.2982585.
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Science, 320, 1308 (2008); https://doi.org/10.1126/science.1156965.
S. Hou, M.L. Kasner, S. Su, K. Patel and R. Cuellari, J. Phys. Chem. C, 114, 14915 (2010); https://doi.org/10.1021/jp1020593.
S. Liu, M.Q. Yang and Y.J. Xu, J. Mater. Chem. A Mater. Energy Sustain., 2, 430 (2014); https://doi.org/10.1039/C3TA13892E.
S. Reich and C. Thomsen, Philos. Trans. R. Soc. Lond. A, 362, 2271 (2004); https://doi.org/10.1098/rsta.2004.1454.
U. Ritter, P. Scharff, C. Siegmund, O.P. Dmytrenko, N.P. Kulish, Y.I. Prylutskyy, N.M. Belyi, V.A. Gubanov, L.I. Komarova, S.V. Lizunova, V.G. Poroshin, V.V. Shlapatskaya and H. Bernas, Carbon, 44, 2694 (2006); https://doi.org/10.1016/j.carbon.2006.04.010.
W. Han, L. Ren, Z. Zhang, X. Qi, Y. Liu, Z. Huang and J. Zhong, Ceram. Int., 41, 7471 (2015); https://doi.org/10.1016/j.ceramint.2015.02.068.
Q. Chen, M. Zhou, Z. Zhang, T. Tang and T. Wang, J. Mater. Sci.: Mater. Electron., 28, 9416 (2017). https://doi.org/10.1007/s10854-017-6683-2.
X. Du, I. Skachko, A. Barker and E.Y. Andrei, Nat. Nanotechnol., 3, 491 (2008); https://doi.org/10.1038/nnano.2008.199.
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); https://doi.org/10.1126/science.1171245.
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo and R.S. Ruoff, Nano Lett., 9, 4359 (2009); https://doi.org/10.1021/nl902623y.
X. Qi, K. Pu, H. Li, X. Zhou, S. Wu, Q. Fan, B. Liu, F. Boey, W. Huang and H. Zhang, Angew. Chem. Int. Ed., 49, 9426 (2010); https://doi.org/10.1002/anie.201004497.
X. Wang, L. Zhi, N. Tsao, Z. Tomovic, J. Li and K. Mullen, Angew. Chem. Int. Ed., 47, 2990 (2008); https://doi.org/10.1002/anie.200704909.
X. Zhang, O.V. Yazyev, J. Feng, L. Xie, C. Tao, Y.-C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S.G. Louie, H. Dai and M.F. Crommie, ACS Nano, 7, 198 (2013); https://doi.org/10.1021/nn303730v.
Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill and P. Avouris, Science, 327, 662 (2010); https://doi.org/10.1126/science.1184289.