Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Tm3+ Sensitization to Ho3+ Doped GeO2-B2O3-BaF2-Al2O3-ZnO2-Na2O Glass on Spectral Properties
Corresponding Author(s) : Feng Xia Yu
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
A series of Tm3+/Ho3+ sensitized 65GeO2-7BaF2-10B2O3-4Al2O3-4ZnO2-10Na2O glass samples were synthesized by using high temperature melting method. The spectral properties were systematically studied when Ho3+ concentration was 0.1, 0.3, 0.5 mol % and Tm2O3 changed from 0.3 to 2.5 mol %. Differential thermal analysis showed that DT was higher than 190 ºC, which illustrated this kind of matrix glass have better thermal stability. The absorption cross section peak height, free energy of Ho3+ from 5I8 to 5I7 and emission cross section were calculated according to Mc-Cumber theory. Under the excitation of 808 nm laser diode, fluorescence intensity at 1954 nm reached the highest value when the concentration of Ho3+ was 0.1 mol % and Tm3+ was 0.7 mol %. However the fluorescence intensity reduced greatly when Ho3+ concentration was 0.5 mol % and Tm3+ exceeded 1.5 mol %. The sensitized function and influence of different Tm3+/Ho3+ doped ion ratios on the spectral properties was studied.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Stroud, A.M. Viano, P.C. Gibbons, K.F. Kelton and S.T. Misture, Appl. Phys. Lett., 69, 2998 (1996); doi:10.1063/1.117756.
- D.M. Shi, Q.Y. Zhang, G.F. Yang and Z.H. Jiang, Acta Phys. Sin., 56, 2951 (2007); doi:10.7498/aps.56.2951.
- G.X. Chen, Q.Y. Zhang, G.F. Yang, Z.-M. Yang and Z.-H. Jiang, Acta Phys. Sin., 56, 4200 (2007); doi:10.7498/aps.56.4200.
- Q.F. Lin, H.P. Xia, J.H. Wang, Y.P. Zhang and Q.Y. Zhang, Acta Phys. Sin., 57, 2554 (2008); doi:10.7498/aps.57.2554.
- Z. Yuwan, W. Qing and Z. Yongdong, Chinese Laser, 38, 1 (2011); doi:10.3788/CJL201138.01.
- B. Yin, Z.M. Yang and G.F. Yang, Rare Metal Mater. Eng., 37, 1016 (2008).
- R. Briers, O. Leroy, S. Devolder, M. Wevers and P. De Meester, Appl. Phys. Lett., 71, 599 (1997); doi:10.1063/1.119805.
- K. Yamanaka, H. Cho and Y. Tsukahara, Appl. Phys. Lett., 76, 2797 (2000); doi:10.1063/1.126481.
- Z. Yanzhao and Y. Hairong, Glass Technology, Chemical Industry Press, Beijing, pp. 104-109 (2006).
- D.E. McCumber, Phys. Rev., 136(4A), 954 (1964); doi:10.1103/PhysRev.136.A954.
- X. Jiang, J. Lousteau, B. Richards and A. Jha, Opt. Mater., 31, 1701 (2009); doi:10.1016/j.optmat.2009.04.011.
References
R.M. Stroud, A.M. Viano, P.C. Gibbons, K.F. Kelton and S.T. Misture, Appl. Phys. Lett., 69, 2998 (1996); doi:10.1063/1.117756.
D.M. Shi, Q.Y. Zhang, G.F. Yang and Z.H. Jiang, Acta Phys. Sin., 56, 2951 (2007); doi:10.7498/aps.56.2951.
G.X. Chen, Q.Y. Zhang, G.F. Yang, Z.-M. Yang and Z.-H. Jiang, Acta Phys. Sin., 56, 4200 (2007); doi:10.7498/aps.56.4200.
Q.F. Lin, H.P. Xia, J.H. Wang, Y.P. Zhang and Q.Y. Zhang, Acta Phys. Sin., 57, 2554 (2008); doi:10.7498/aps.57.2554.
Z. Yuwan, W. Qing and Z. Yongdong, Chinese Laser, 38, 1 (2011); doi:10.3788/CJL201138.01.
B. Yin, Z.M. Yang and G.F. Yang, Rare Metal Mater. Eng., 37, 1016 (2008).
R. Briers, O. Leroy, S. Devolder, M. Wevers and P. De Meester, Appl. Phys. Lett., 71, 599 (1997); doi:10.1063/1.119805.
K. Yamanaka, H. Cho and Y. Tsukahara, Appl. Phys. Lett., 76, 2797 (2000); doi:10.1063/1.126481.
Z. Yanzhao and Y. Hairong, Glass Technology, Chemical Industry Press, Beijing, pp. 104-109 (2006).
D.E. McCumber, Phys. Rev., 136(4A), 954 (1964); doi:10.1103/PhysRev.136.A954.
X. Jiang, J. Lousteau, B. Richards and A. Jha, Opt. Mater., 31, 1701 (2009); doi:10.1016/j.optmat.2009.04.011.