Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Experimental Study on the Rheological Property of Aqueous Solution of Polyacrylamide
Corresponding Author(s) : P. Wang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
With polyacrylamide solution as experimental subject, the paper reports the effect of mass concentration, shear rate and temperature on the rheological properties of polyacrylamide solution. Experimental results indicated that the apparent viscosity of polyacrylamide solution increased linearly with linear increasing concentration at concentration of 0.5-2.0 g/L; the apparent viscosity decreased with the increasing of shear rate and temperature. With the changing of temperature and concentration, the flow behaviour index (n) and consistency coefficient (K) behave similar to power-law fluid. Considering the combined effects of temperature and concentration, the experiment fitted an equation of the apparent viscosity with regard of concentration and temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Kong, J. Wang and X. Wu, Appl. Chem. Ind., 41, 793 (2012).
- A.Y. Malkin, J. Non-Newt. Fluid Mech., 192, 48 (2013); doi:10.1016/j.jnnfm.2012.09.015.
- A.J. Poslinski, M.E. Ryan, R.K. Gupta, S.G. Seshadri and F.J. Frechette, J. Rheology, 32, 703 (1988); doi:10.1122/1.549987.
- L. Nicodemo, L. Nicolais and R.F. Landel, Chem. Eng. Sci., 29, 729 (1974); doi:10.1016/0009-2509(74)80189-2.
- D. Fang, R. Guo and R. Ha, Acrylamide Polymers, Chemical Industry Press, Beijing, pp. 32-45 (2006).
- D. Ma, Structure and Properties of Polymer (Property Volume), Science Press, Beijing, pp. 154-157 (2013).
- T. Jiang, T. Fang and G. Chen, J. East China Inst. Chem. Technol., 1, 25 (1982).
- J. Yang, CIESC J., 53, 1089 (2002).
- X. Ye, College of Petroleum Engineering, China University of Petroleum, pp. 15-19 (2008).
- X. Huang, J. Capital Normal Univ., 16, 62 (1995).
- M.H. Yang, J. Appl. Polym. Sci., 82, 2784 (2001); doi:10.1002/app.2132.
- K.E. Khalil, P. Ramakrishna, A.M. Nanjundaswamy and M.V. Patwardhan, J. Food Eng., 10, 231 (1989); doi:10.1016/0260-8774(89)90028-9.
- A. Kaya and N. Sozer, Int. J. Food Sci. Technol., 40, 223 (2005); doi:10.1111/j.1365-2621.2004.00897.x.
- J. Giner, A. Ibarz, S. Garza and S. Xhian-Quan, J. Food Eng., 30, 147 (1996); doi:10.1016/S0260-8774(96)00015-5.
References
X. Kong, J. Wang and X. Wu, Appl. Chem. Ind., 41, 793 (2012).
A.Y. Malkin, J. Non-Newt. Fluid Mech., 192, 48 (2013); doi:10.1016/j.jnnfm.2012.09.015.
A.J. Poslinski, M.E. Ryan, R.K. Gupta, S.G. Seshadri and F.J. Frechette, J. Rheology, 32, 703 (1988); doi:10.1122/1.549987.
L. Nicodemo, L. Nicolais and R.F. Landel, Chem. Eng. Sci., 29, 729 (1974); doi:10.1016/0009-2509(74)80189-2.
D. Fang, R. Guo and R. Ha, Acrylamide Polymers, Chemical Industry Press, Beijing, pp. 32-45 (2006).
D. Ma, Structure and Properties of Polymer (Property Volume), Science Press, Beijing, pp. 154-157 (2013).
T. Jiang, T. Fang and G. Chen, J. East China Inst. Chem. Technol., 1, 25 (1982).
J. Yang, CIESC J., 53, 1089 (2002).
X. Ye, College of Petroleum Engineering, China University of Petroleum, pp. 15-19 (2008).
X. Huang, J. Capital Normal Univ., 16, 62 (1995).
M.H. Yang, J. Appl. Polym. Sci., 82, 2784 (2001); doi:10.1002/app.2132.
K.E. Khalil, P. Ramakrishna, A.M. Nanjundaswamy and M.V. Patwardhan, J. Food Eng., 10, 231 (1989); doi:10.1016/0260-8774(89)90028-9.
A. Kaya and N. Sozer, Int. J. Food Sci. Technol., 40, 223 (2005); doi:10.1111/j.1365-2621.2004.00897.x.
J. Giner, A. Ibarz, S. Garza and S. Xhian-Quan, J. Food Eng., 30, 147 (1996); doi:10.1016/S0260-8774(96)00015-5.