Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cationic Surfactant-Induced Instantaneous Gelation of Silk Fibroin Solution
Corresponding Author(s) : Shenzhou Lu
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
Modern traumatic wound-care products have several associated disadvantages. They do not meet requirements because they lack good permeability, biocompatibility and air tightness. In an attempt to overcome these shortcomings, a new type of flexible, instantaneously-formed hydrogels resulting from blending silk fibroin and cationic surfactants with different carbon chains are introduced in this work. The secondary structure of these hydrogels is similar to that of a silk fibroin solution as they primarily consist of random coils. However, the structure is different from a pure silk fibroin hydrogel which primarily consists of b-sheet structure. By means of SEM, silk fibroin molecules form clustered nanofilaments during the cationic surfactant-induced hydrogelation, which is different from a pure silk fibroin hydrogel that is composed of a porous network structure. The charge effect, hydrophobic effect and surface tension are presumed to be related to the formation of the cationic surfactant/silk fibroin hydrogels.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.C. Lin and A.T. Metters, Adv. Drug Deliv. Rev., 58, 1379 (2006); doi:10.1016/j.addr.2006.09.004.
- X.Q. Wang, J.A. Kluge, G.G. Leisk and D.L. Kaplan, Biomaterials, 29, 1054 (2008); doi:10.1016/j.biomaterials.2007.11.003.
- A. Matsumoto, J. Chen, A.L. Collette, U.-J. Kim, G.H. Altman, P. Cebe and D.L. Kaplan, J. Phys. Chem. B, 110, 21630 (2006); doi:10.1021/jp056350v.
- K. Numata, T. Katashima and T. Sakai, Biomacromolecules, 12, 2137 (2011); doi:10.1021/bm200221u.
- B. Balakrishnan and R. Banerjee, Chem. Rev., 111, 4453 (2011); doi:10.1021/cr100123h.
- U.J. Kim, J. Park, C. Li, H.-J. Jin, R. Valluzzi and D.L. Kaplan, Biomacromolecules, 5, 786 (2004); doi:10.1021/bm0345460.
- T. Yucel, P. Cebe and D.L. Kaplan, Biophys. J., 97, 2044 (2009); doi:10.1016/j.bpj.2009.07.028.
- S. Nagarkar, T. Nicolai, C. Chassenieux and A. Lele, Phys. Chem. Chem. Phys., 12, 3834 (2010); doi:10.1039/B916319K.
- T.Y. Zhong, Z.G. Xie, C.M. Deng, M. Chen, Y. Gao and B. Zuo, J. Appl. Polym. Sci., 127, 2019 (2013); doi:10.1002/app.37580.
- X.L. Wu, J. Hou, M.Z. Li, J. Wang, D.L. Kaplan and S. Lu, Acta Biomater., 8, 2185 (2012); doi:10.1016/j.actbio.2012.03.007.
- X.L. Wu, L. Mao, D.K. Qin and S.Z. Lu, Adv. Mater. Res., 311-313, 1755 (2011); doi:10.4028/www.scientific.net/AMR.311-313.1755.
- N. Guziewicz, A. Best, B. Perez-Ramirez and D.L. Kaplan, Biomaterials, 32, 2642 (2011); doi:10.1016/j.biomaterials.2010.12.023.
- Q. Lu, X. Hu, X. Wang, J.A. Kluge, S. Lu, P. Cebe and D.L. Kaplan, Acta Biomater., 6, 1380 (2010); doi:10.1016/j.actbio.2009.10.041.
- X. Chen, D.P. Knight, Z.Z. Shao and F. Vollrath, Polymer, 42, 9969 (2001); doi:10.1016/S0032-3861(01)00541-9.
- S.Z. Lu, X.Q. Wang, Q. Lu, X. Zhang, J.A. Kluge, N. Uppal, F. Omenetto and D.L. Kaplan, Biomacromolecules, 11, 143 (2010); doi:10.1021/bm900993n.
- A.E. Terry, D.P. Knight, D. Porter and F. Vollrath, Biomacromolecules, 5, 768 (2004); doi:10.1021/bm034381v.
References
C.C. Lin and A.T. Metters, Adv. Drug Deliv. Rev., 58, 1379 (2006); doi:10.1016/j.addr.2006.09.004.
X.Q. Wang, J.A. Kluge, G.G. Leisk and D.L. Kaplan, Biomaterials, 29, 1054 (2008); doi:10.1016/j.biomaterials.2007.11.003.
A. Matsumoto, J. Chen, A.L. Collette, U.-J. Kim, G.H. Altman, P. Cebe and D.L. Kaplan, J. Phys. Chem. B, 110, 21630 (2006); doi:10.1021/jp056350v.
K. Numata, T. Katashima and T. Sakai, Biomacromolecules, 12, 2137 (2011); doi:10.1021/bm200221u.
B. Balakrishnan and R. Banerjee, Chem. Rev., 111, 4453 (2011); doi:10.1021/cr100123h.
U.J. Kim, J. Park, C. Li, H.-J. Jin, R. Valluzzi and D.L. Kaplan, Biomacromolecules, 5, 786 (2004); doi:10.1021/bm0345460.
T. Yucel, P. Cebe and D.L. Kaplan, Biophys. J., 97, 2044 (2009); doi:10.1016/j.bpj.2009.07.028.
S. Nagarkar, T. Nicolai, C. Chassenieux and A. Lele, Phys. Chem. Chem. Phys., 12, 3834 (2010); doi:10.1039/B916319K.
T.Y. Zhong, Z.G. Xie, C.M. Deng, M. Chen, Y. Gao and B. Zuo, J. Appl. Polym. Sci., 127, 2019 (2013); doi:10.1002/app.37580.
X.L. Wu, J. Hou, M.Z. Li, J. Wang, D.L. Kaplan and S. Lu, Acta Biomater., 8, 2185 (2012); doi:10.1016/j.actbio.2012.03.007.
X.L. Wu, L. Mao, D.K. Qin and S.Z. Lu, Adv. Mater. Res., 311-313, 1755 (2011); doi:10.4028/www.scientific.net/AMR.311-313.1755.
N. Guziewicz, A. Best, B. Perez-Ramirez and D.L. Kaplan, Biomaterials, 32, 2642 (2011); doi:10.1016/j.biomaterials.2010.12.023.
Q. Lu, X. Hu, X. Wang, J.A. Kluge, S. Lu, P. Cebe and D.L. Kaplan, Acta Biomater., 6, 1380 (2010); doi:10.1016/j.actbio.2009.10.041.
X. Chen, D.P. Knight, Z.Z. Shao and F. Vollrath, Polymer, 42, 9969 (2001); doi:10.1016/S0032-3861(01)00541-9.
S.Z. Lu, X.Q. Wang, Q. Lu, X. Zhang, J.A. Kluge, N. Uppal, F. Omenetto and D.L. Kaplan, Biomacromolecules, 11, 143 (2010); doi:10.1021/bm900993n.
A.E. Terry, D.P. Knight, D. Porter and F. Vollrath, Biomacromolecules, 5, 768 (2004); doi:10.1021/bm034381v.